Великолепный и таинственный электрический угорь. Сколько электричества вырабатывает человек

Доминик Стэтхем

Фото ©depositphotos.com/Yourth2007

Electrophorus electricus ) обитает в темных водах болот и рек в северной части Южной Америки. Это таинственный хищник, обладающий сложной системой электролокации и способный перемещаться и охотиться в условиях низкой видимости. Используя «электрорецепторы» для определения искажений электрического поля, вызванных его собственным телом, он способен обнаруживать потенциальную жертву, сам при этом оставаясь незамеченным. Он обездвиживает жертву с помощью сильнейшего электрического шока, достаточно сильного, чтобы оглушить такое крупное млекопитающее, как лошадь, или даже убить человека. Своей удлиненной округлой формой тела угорь напоминает рыбу, которую мы обычно называем муреной (порядок Anguilliformes); однако принадлежит к другому порядку рыб (Gymnotiformes).

Рыб, способных обнаруживать электрические поля, называют электрорецептивными , а способных генерировать мощное электрическое поле, таких как электрический угорь, называют электрогенными .

Как электрический угорь генерирует такое высокое электрическое напряжение?

Электрические рыбы – не единственные, кто способен генерировать электричество. Фактически все живые организмы делают это в той или иной мере. Мышцы нашего тела, к примеру, управляются мозгом с помощью электрических сигналов. Электроны, вырабатываемые бактериями, могут быть использованы для выработки электричества в топливных клетках, которые называются электроцитами. (см. таблицу ниже). И хотя каждая из клеток несет незначительный заряд, благодаря тому, что тысячи таких клеток собираются в серии, подобно батарейкам в фонарике, может быть выработано напряжение до 650 вольт (V). Если организовать эти ряды в параллели, можно получить электрический ток силой в 1Ампер (A), что дает электрический удар силой в 650 ватт (W; 1 W = 1 V × 1 A).

Каким образом угрю удается не оглушать самого себя электрическим током?

Фото:CC-BY-SA Steven Walling via Wikipedia

Ученые не знают точно, как ответить на этот вопрос, но результаты некоторых интересных наблюдений могут пролить свет на данную проблему. Во-первых, жизненно важные органы угря (например, мозг и сердце) расположены возле головы, вдалеке от органов, вырабатывающих электричество, и окружены жировой тканью, которая может действовать в виде изоляции. Кожа также имеет изолирующие свойства, поскольку, согласно результатам наблюдений, угри с поврежденной кожей более подвержены самооглушению электрическим ударом.

Во-вторых, наиболее сильные электрические удары угри способны наносить в момент спаривания, не нанося при этом вреда партнеру. Однако если удар такой же силы нанести другому угрю не во время спаривания, это может его убить. Это предполагает, что у угрей существует некая система защиты, которую можно включать и отключать.

Мог ли электрический угорь возникнуть в результате эволюции?

Очень трудно представить себе, как это могло бы произойти в ходе незначительных изменений, как того требует процесс, предложенный Дарвиным. В случае, если ударная волна была важной с самого начала, то вместо того, чтобы оглушить, она предупреждала бы жертву об опасности. Более того, чтобы в ходе эволюции выработать способность оглушать жертву, электрическому угрю пришлось бы одновременно вырабатывать и систему самозащиты. Каждый раз, когда возникала мутация, увеличивающая силу электрического удара, должна была возникать и другая мутация, улучшающая электроизоляцию угря. Кажется маловероятным то, что одной мутации было бы достаточно. К примеру, для того, чтобы передвинуть органы ближе к голове, понадобилось бы целая серия мутаций, которые должны были возникнуть одновременно.

Хотя немногие рыбы способны оглушать свою добычу, существует множество видов, использующих электричество низкого напряжения для навигации и общения. Электрические угри относятся к группе южно-американских рыб, известных под названием «ножетелки» (семейство Mormyridae), которые тоже используют электролокацию и, как считается, развили эту способность наряду со своими южно-американскими собратьями . Более того, эволюционисты вынуждены заявлять, что электрические органы у рыб эволюционировали независимо друг от друга восемь раз . Если учесть сложность их строения, поражает уже то, что эти системы могли развиться в ходе эволюции хотя бы один раз, не говоря уже о восьми.

Ножетелки из Южной Америки и химеровые из Африки используют свои электрические органы для определения местонахождения и коммуникации, и используют ряд различных видов электрорецепторов. В обеих группах есть виды, продуцирующие электрические поля разных сложных форм волны. Два вида ножетелок, Brachyhypopomus benetti и Brachyhypopomus walteri настолько похожи друг на друга, что их можно было бы отнести к одному виду, однако первый из них вырабатывает ток постоянного напряжения, а второй – ток переменного напряжения. Эволюционная история становится еще более примечательной, если копнуть еще глубже. Для того, чтобы их аппараты электролокации не мешали друг другу и не создавали помех, некоторые виды используют специальную систему, с помощью которой каждая из рыб меняет частоту электрического разряда. Примечательно, что эта система работает практически так же (используется такой же вычислительный алгоритм), как у стеклянной ножетелки из Южной Америки (Eigenmannia ) и африканской рыбы аба-аба (Gymnarchus ). Могла ли такая система устранения помех независимо развиться в ходе эволюции у двух отдельных групп рыб, обитающих на разных континентах?

Шедевр Божьего творения

Энергетический агрегат электрического угря затмил все творения человека своей компактностью гибкостью, мобильностью, экологической безопасностью и способностью к самовосстановлению. Все части этого аппарата идеальным образом интегрированы в лощеное тело, что дает угрю возможность плыть с большой скорость и проворством. Все детали его строения – от крохотных клеток, вырабатывающих электричество, до сложнейшего вычислительного комплекса, анализирующего искажения производимых угрем электрических полей, - указывают на замысел великого Создателя.

Как электрический угорь генерирует электричество? (научно-популярная статья)

Электрические рыбы генерируют электричество подобно тому, как это делают нервы и мышцы в нашем теле. Внутри клеток-электроцитов особые энзимные протеины под названием Na-K ATФаза выкачивают натриевые ионы через клеточную мембрану, и всасывают ионы калия. (‘Na’ – химический символ натрия, а ‘K’ – химический символ калия». ‘ATФ’ – аденозинтрифосфат – энергетическая молекула, используемая для работы насоса). Дисбаланс между ионами калия внутри и снаружи клетки приводит к возникновению химического градиента, который снова выталкивает ионы калия из клетки. Подобным образом, дисбаланс между ионами натрия порождает химический градиент, который затягивает ионы натрия обратно в клетку. Другие протеины, встроенные в мембрану, действуют в виде каналов для ионов калия, пор, позволяющих ионам калия покинуть клетку. По мере того, как ионы калия с позитивным зарядом накапливаются снаружи клетки, вокруг клеточной мембраны нарастает электрический градиент, при чем наружная часть клетки имеет более позитивный заряд, чем ее внутренняя часть. Насосы Na-K ATФазы (натрий-калиевой аденозинтрифосфатазы) построены таким образом, что они выбирают лишь один позитивно заряженный ион, иначе негативно заряженные ионы также стали бы перетекать, нейтрализуя заряд.

Большая часть тела электрического угря состоит из электрических органов. Главный орган и орган Хантера отвечают за выработку и накопление электрического заряда. Орган Сакса вырабатывает электрическое поле низкого напряжения, которое используется для электролокации.

Химический градиент действует таким образом, что выталкивает ионы калия, а электрический градиент втягивает их обратно. В момент наступления баланса, когда химические и электрические силы упраздняют друг друга, снаружи клетки будет находиться примерно на 70 милливольт больше позитивного заряда, чем внутри. Таким образом, внутри клетки оказывается негативный заряд в -70 милливольт.

Однако большее количество протеинов, встроенных в клеточную мембрану, обеспечивают каналы для ионов натрия – это поры, которые позволяют ионам натрия снова попадать в клетку. В обычном состоянии эти поры перекрыты, однако когда электрические органы активируются, поры раскрываются, и ионы натрия с позитивным зарядом снова поступают в клетку под воздействием градиента химического потенциала. В данном случае баланс достигается, когда внутри клетки собирается позитивный заряд до 60 милливольт. Происходит общее изменение напряжения от -70 до +60 милливольт, и это составляет 130 mV или 0.13 V. Этот разряд происходит очень быстро, примерно за одну миллисекунду. И поскольку в серии клеток собрано примерно 5000 электроцитов, благодаря синхронному разряду всех клеток может вырабатываться до 650 вольт (5000 × 0.13 V = 650).

Насос Na-K ATФазы (натрий-калиевой аденазинтрифосфотазы). За каждый цикл два иона калия (K +) поступают в клетку, а три иона натрия (Na +) выходят из клетки. Этот процесс приводится в движение энергией АТФ молекул.

Глоссарий

Атом или молекула, несущий электрический заряд благодаря неравному количеству электронов и протонов. Ион будет иметь негативный заряд, если в нем содержится больше электронов, чем протонов, и позитивный заряд – если в нем содержится больше протонов, нежели электронов. Ионы калия (K +) и натрия (Na +) имеют позитивный заряд.

Градиент

Изменение какой-либо величины при перемещении от одной точки пространства к другой. Например, если вы отходите от костра, температура понижается. Таким образом, костер генерирует температурный градиент, уменьшающийся с расстоянием.

Электрический градиент

Градиент изменения величины электрического заряда. Например, если снаружи клетки содержится большее количество позитивно заряженных ионов, чем внутри клетки, электрический градиент будет проходить через клеточную мембрану. Благодаря тому, что одинаковые заряды отталкиваются друг от друга, ионы будут двигаться таким образом, чтобы сбалансировать заряд внутри и снаружи клетки. Передвижения ионов из-за электрического градиента происходят пассивно, под воздействием электрической потенциальной энергии, а не активно, под воздействием энергии, поступающей из внешнего источника, например из АТФ-молекулы.

Химический градиент

Градиент химической концентрации. Например, если снаружи клетки содержится большее количество ионов натрия, чем внутри клетки, то химический градиент натриевого иона будет проходить через клеточную мембрану. Из-за произвольного движения ионов и столкновений между ними существует тенденция, что ионы натрия будут двигаться от более высоких концентраций к более низким концентрациям до тех пор, пока не будет установлен баланс, то есть пока по обе стороны мембраны не окажется одинаковое количество ионов натрия. Это происходит пассивно, в результате диффузии. Движения обусловлены кинетической энергией ионов, а не энергией, получаемой из внешнего источника, такого как АТФ молекула.

Электрический ток и магнитные поля

О том, что некоторые рыбы могут генерировать электрический ток, было известно еще древним грекам, хотя они и не знали, что то шоковое оцепенение, которое вызывали у рыбаков электрические скаты, было связано с действием электричества. Они полагали, что рыба выделяет из своих кровеносных сосудов какое-то ядовитое вещество, которое замораживает кровь любого, кто к ней прикоснется. Также издревле был известен электрический сом, обитающий в реках и озерах тропической Африки. В Египте его называют «ра-аш», что созвучно арабскому слову «pa-ад», означающему в переводе «гром». Начиная с XI столетия арабы используют его в народной медицине (своего рода электротерапия): они прикладывают живых сомов к различным частям тела для снятия всякого рода болей. Римляне подобным же образом использовали электрических скатов при лечении подагры и головной боли.

Эти рыбы, как и обитающие в Южной Америке электрические угри, обладают особыми органами, которые способны производить мощный электрический разряд. С помощью своего электрического органа, состоящего из видоизмененных мышечных волокон, электрический сом может производить разряд напряжением до 650 В. Сокращение обычных мышц начинается с небольших электрических разрядов, называемых потенциалами действия, которые распространяются по поверхности мышечного волокна точно так же, как рецепторный потенциал распространяется по рецептору. В процессе эволюции в электрическом органе рыб была утрачена способность мышц к сокращению, а потенциалы действия, напротив, очень сильно возросли. Волокна электрического органа не похожи на тонкие мышечные волокна, а напоминают пластины, расположенные наподобие элементов в аккумуляторной батарее. Как и в любой батарее, отдельные заряды пластин суммируются и производят один сильный разряд. Потенциал действия каждой пластины достигает всего лишь 0,1 В; однако в электрическом органе угря могут быть одновременно возбуждены тысячи таких пластин, и тогда производимый ими разряд достигает огромной силы.

Электрические рыбы, о которых мы только что говорили, используют мощный электрический разряд для оглушения жертвы. Вместе с тем есть рыбы, генерирующие гораздо более слабые токи - настолько слабые, что они не в состоянии обездвижить жертву; во многих случаях эти токи можно зарегистрировать лишь с помощью приборов. Почти у всех скатов электрические органы располагаются в области хвоста; электрический скат отличается от всех остальных тем, что производит особенно сильный разряд. К электрическим рыбам принадлежат также звездочет, обитающий у берегов Северной Америки, клюворылые рыбы Африки, например слонорыл, а также гимнотовидные рыбы, к которым относится ножетелка и электрический угорь, - обитатели Южной Америки. Биологическое значение слабых токов, производимых этими рыбами, долгое время оставалось загадкой; теперь предполагают, что рыбы могут воспринимать искажение образующегося вокруг их тел электрического поля и таким образом обнаруживать препятствия или добычу.

Уже более ста лет известно, что электрические органы есть у нильской щуки - рыбы необычного вида, вдоль всей спины которой проходит постоянно колеблющийся плавник. В 1951 году Г. У. Лиссман тщательно исследовал поведение этих рыб. Нильские щуки передвигаются не с помощью движений хвоста, как большинство других рыб, а с помощью волнообразно колышущегося спинного плавника. При этом их тело не изгибается из стороны в сторону. Эти рыбы с одинаковой легкостью могут двигаться как вперед, так и назад; они без труда обходят все препятствия, встречающиеся на их пути. Нильские щуки обитают в мутных илистых реках и по ночам охотятся на мелких рыбешек. В таких условиях от зрения мало пользы, и поэтому вполне естественно предположить, что какое-то другое чувство помогает нильской щуке ловить добычу и избегать препятствий.

По данным Лиссмана, нильская щука использует электрические органы для обнаружения различных препятствий; кроме того, он показал, что таким же образом обнаруживают препятствия и другие рыбы, обладающие электрическими органами. Если опустить в аквариум с нильской щукой пару электродов, подключенных к осциллографу, прибор тотчас же зарегистрирует электрические разряды. Они следуют с постоянной частотой (примерно 300 имп/с), и при этом каждый разряд создает в воде электрическое поле, напоминающее поле вокруг магнитного стержня. Положительным полюсом в данном случае служит голова рыбы, а отрицательным - ее хвост. Любой находящийся в воде предмет искажает привычную конфигурацию электрического поля; оставалось лишь показать, что нильские щуки способны воспринимать свои слабые электрические поля и что с помощью этих полей они обнаруживают различные объекты. Оказалось, что щуки реагируют на движение слабого магнита вблизи аквариума. Кроме того, если записать электрические разряды рыбы на магнитную пленку, а затем воспроизвести эту запись, рыба будет нападать на опущенные в воду электроды. Позднее, для того чтобы выяснить, может ли нильская щука обнаруживать находящиеся вблизи нее предметы, были проведены опыты с условными рефлексами. В аквариум опускали две трубочки из пористой глины, одну из которых заполняли водой из-под крана или каким-либо другим веществом, проводящим электрический ток, а другую - диэлектриком (например, воском или стеклом). Рыбу обучали приближаться к трубочке с проводящим веществом, каждый раз подкрепляя ее правильное поведение кусочком мяса. Вскоре она обучилась подплывать к этой трубочке и не обращать никакого внимания на другую, наполненную диэлектриком. Изменяя содержимое трубок, удалось определить, что нильская щука может обнаружить наличие в одной из них стеклянной палочки диаметром 2 мм. Такая тоненькая палочка вызывает минимальные изменения электрического поля рыбы; чтобы обнаружить эти изменения, нильская щука должна обладать крайне тонкой чувствительностью.

Органы чувств, которыми пользуется рыба для восприятия электрического поля, находятся в кожных покровах головы и очень напоминают органы боковой линии. Они представляют собой крошечные ямки, наполненные желеобразной массой, на дне которых находятся рецепторы. У нильской щуки толстая кожа, которая очень плохо проводит электричество; желеобразное содержимое ямок, напротив, представляет собой хороший проводник и играет роль вспомогательного органа, собирающего и концентрирующего электрический ток.

Вскоре после того, как у нильской щуки была обнаружена способность воспринимать электрические поля, ученые определили биологическое назначение ампул Лоренцини, имеющихся у скатов. В гл. 1 уже отмечалось, что эти органы чувств одно время считали температурными рецепторами или рецепторами давления, однако в конце концов выяснилось, что они являются электрическими рецепторами. Как и сенсорные органы, расположенные на голове нильской щуки, ампулы Лоренцини представляют собой группу чувствительных клеток, которые находятся на дне канала, заполненного желеобразным содержимым. Подобные органы были обнаружены и у других рыб, чувствительных к электричеству, например у африканского слонорыла и у американской ножетелки.

Фиг. 34. Электрические органы, расположенные в хвосте ножетелки, генерируют электрическое поле, картина которого напоминает картину магнитного поля, существующего вокруг намагниченного стержня

Находящиеся на голове рыбы электрические рецепторы обнаруживают искажения конфигурации этого электрического поля, вызванные объектами, находящимися вблизи рыбы. Плохой электрический проводник (А) вызывает расхождение силовых линий, хороший проводник (Б) - их сжатие.

На фиг. 34 показано, как проводники и диэлектрики изменяют конфигурацию электрического поля вокруг головы рыбы. По-видимому, эти изменения влияют на картину нервных импульсов, поступающих от рецепторов в мозг. Каким образом рыба использует информацию, получаемую от воспринимающих электрическое поле органов, для обнаружения точного положения предмета, совершенно не известно, Считается, что электрические рыбы действительно могут обнаруживать окружающие их объекты, поскольку уже доказана способность этих рыб избегать встречающихся на пути препятствий. Часть мозга, связанная с органами электрического чувства, велика по размеру и, по-видимому, должна быть способна производить анализ очень сложной информации, поступающей от этих органов. Работа мозга несколько облегчается благодаря особому способу передвижения электрических рыб. Обычные рыбы плавают в воде за счет ударов хвоста, который колеблется при этом из стороны в сторону, а у большей части рыб, чувствительных к электрическому току, во время плавания тело вытянуто по прямой линии и почти неподвижно. Вряд ли можно считать простым совпадением развитие такого специфического способа плавания у электрических рыб, принадлежащих не только к разным видам, но даже к разным подклассам. У ската электрические органы находятся на узком твердом хвосте; плавают скаты с помощью своих мягких грудных плавников. Многие рыбы, которые относятся к семействам клюворылых и гимнотовидных, в том числе нильская щука и ножетелка, все время держат хвост прямо и передвигаются посредством волнообразных движений длинных плавников, расположенных на спине или на брюхе. Преимущество такого способа передвижения очевидно, так как при этом не искажается картина электрического поля (что было бы неизбежно, если бы рыба двигала хвостом из стороны в сторону); в результате значительно упрощается анализ приходящей в мозг информации.

Рыбы, имеющие электрические органы, обычно живут в мутной воде или активны в ночное время. Глаза у них маленькие, а поэтому восприятие электрического поля должно иметь для них большое значение, хотя еще никто не показал, что какие-либо рыбы, в том числе скаты, и в самом деле как-то используют электрическое чувство. Вполне возможно, что электрическое чувство предназначено не только для того, чтобы избегать препятствий и обнаруживать жертву. Может быть, когда-нибудь выяснится, что оно, подобно другим чувствам, играет определенную роль в передаче информации во время агрессивного поведения или обряда ухаживания. Например, было обнаружено, что нильская щука изменяет частоту своих электрических разрядов, когда в аквариуме, где она находится, воспроизводят ее же собственные разряды, записанные на пленку. Можно предположить, что таким образом эти рыбы избегают «наложения» сигналов один на другой.

Электрическое чувство - это совершенно «новое чувство», о котором еще тридцать лет назад не было известно. Исследование этого чувства привело к открытию рецепторного органа нового типа. Электрическое чувство в корне отлично от всех других, обсуждаемых в этой книге чувств, которыми мы сами в какой-то мере обладаем (хотя животные используют их порой в других целях). Пусть с трудом, но мы все таки можем представить себе, как летучая мышь ориентируется с помощью эхолокации, а пчела - с помощью поляризованного света; однако электрические рыбы живут, по-видимому, в совершенно чуждом нам мире.

С тех пор как Лиссман обнаружил у нильских щук способность воспринимать слабые токи, было открыто еще одно загадочное чувство, по всей вероятности, связанное с только что описанным. В гл. 7 было высказано предположение, что птицы, по-видимому, могут ориентироваться при полете, используя магнитное поле Земли. Мы пока еще не располагаем убедительным доказательством того, что они воспринимают магнитное поле, однако было обнаружено, что некоторые более примитивно организованные животные реагируют на слабое магнитное поле. В Северной Австралии некоторые виды термитов всегда строят гнезда таким образом, что длинная ось гнезда совпадает с направлением север - юг; группа термитников выглядит как флотилия стоящих на якоре кораблей, повернутых носом к ветру. Предполагаемая причина такой ориентации гнезд заключается в том, что их широкие стороны, направленные на запад и восток, должны улавливать слабые лучи утреннего и вечернего солнца, благодаря чему в гнезде поддерживается нужная температура. Никаких доказательств этого предположения не существует; более того, известно, что температура в гнездах термитов других видов никак не зависит от температуры внешней среды. В термитниках очень толстые стены, а температуру воздуха внутри них регулируют сами термиты почти так же, как это делают пчелы в своем улье.

В то же время известно, что некоторые виды термитов воспринимают магнитное поле. Внутри термитника отдельные особи располагаются параллельно силовым линиям магнитного поля Земли (а у некоторых видов - под прямым углом к ним). Это может в какой-то мере объяснить, почему гнезда термитов ориентированы вдоль силовых линий магнитного поля Земли: ведь если головы термитов обращены к северу или к югу, они будут строить свои гнезда вдоль линии, проходящей с севера на юг. Если посадить термитов в железную коробочку, они теряют способность ориентироваться; в то же время, если положить под ящик с термитами сильный магнит, они изменяют положение своего тела и располагаются вдоль новых силовых линий. Других животных также можно сбить с курса, если поместить около них магнит; это удается проделать с такими филогенетически далекими животными, как прудовики, плоские черви и простейшие.

Загадку представляет не только то, почему эти животные ориентируются с помощью магнитного поля, но и то, как они воспринимают это поле. До сих пор еще не найдено никакого органа чувств или рецептора, которые бы реагировали на магнитное поле. Однако рано или поздно исследователи, может быть, обнаружат, что магнитное чувство широко распространено среди самых различных животных; если это так, то у нас нет никаких оснований считать его последним чувством, которое мы откроем. Уже сейчас предполагают, что некоторые люди способны воспринимать радиоволны. В 1968 году было обнаружено, что перистые антенны некоторых ночных бабочек чувствительны к свету, хотя у этих антенн нет ни роговицы, ни хрусталика, ни сетчатки - структур, которые обычно ассоциируются со светочувствительными органами.

Биология в настоящее время переживает свой золотой век. Во всех областях биологических исследований сейчас наблюдаются головокружительные успехи, которые стали возможны благодаря самым последним достижениям других наук, например созданию электронного микроскопа и развитию вычислительной техники. Поистине ошеломляющие успехи сделаны в области молекулярной биологии, биологии популяций и сообществ. Так же быстро развивается и физиология органов чувств; вскрываются сложнейшие механизмы их функционирования, благодаря чему мы имеем возможность объяснить поведение животных с точки зрения того, что могут и чего не могут их органы чувств, вместо того, чтобы просто считать, будто они живут в таком же мире, как наш. Однако по мере накопления информации возникают все новые и новые проблемы. Исходя из общего запаса знаний, которыми мы сейчас располагаем, следует считать, что каждая глава этой книги является далеко не полной: мы всегда должны помнить, что для нас, к сожалению, еще многое остается загадкой, например то, каким образом функционирует тот или иной орган чувств или даже каково биологическое назначение некоторых из этих органов. В конце концов мы обязательно узнаем, каким образом термиты ощущают магнитное поле Земли и почему они на него реагируют, но к этому времени уже наверняка будут открыты новые, не менее загадочные чувства.

Фото I. В то время, когда коза щиплет листья, уши ее находятся в постоянном движении. Это помогает животному точно определить, откуда приходят звуки. Двигая одним ухом совершенно независимо от другого, коза может концентрировать свое внимание на двух звуках одновременно.

Фото II. Сова сипуха на своем насесте с только что пойманной землеройкой. Эта сова охотится с помощью зрения или слуха, которые характеризуются необычайной остротой. Единственное средство защиты для землеройки - надежное укрытие.

Фото III. Обитающая в пустынях Северной Америки кенгуровая крыса ведет ночной образ жизни и обладает чрезвычайно острым слухом. Она слышит слабые шорохи, свидетельствующие о приближении совы или гремучей змеи, и в момент их нападения мгновенно отпрыгивает в сторону.

Фото IV. Фотография подковоносой летучей мыши, на которой хорошо видна характерная кожистая складка на носу; эта складка может изгибаться, колеблясь из стороны в сторону, и таким образом изменять направление ультразвукового луча, испускаемого летучей мышью.

Фото V. Южноамериканские птицы гуахаро ориентируются с помощью сонара. Они отыскивают путь в кромешной тьме пещер, прислушиваясь к эху от своих криков. Обратите внимание на птиц, сидящих на гнезде позади выступа скалы.

Фото VI. Жировая подушка дельфина - «дыня» - находится между клювом и воздушными мешками; она фокусирует ультразвуковые сигналы, производимые с помощью воздушных мешков. На клюве можно видеть цепочку сенсорных ямок. В каждом такой ямке имеются волоски (остатки вибрисс наземных зверей), которые воспринимают вибрации в воде.

Фото VII. Сонар позволяет землеройкам обнаруживать крупные объекты; благодаря этому животные могут избегать открытых пространств, где они беззащитны против хищников.

Фото VIII. Большую часть времени илистые прыгуны проводят на суше. Их глаза расположены на своего рода выдвижных «турелях» и защищены от высыхания своеобразными «очками».

Фото IX. Глаза играют важную роль в жизни лягушки: с их помощью она находит пищу и водоемы и вовремя обнаруживает врагов.

Фото X. Сложные глаза комнатной мухи состоят из многих тысяч элементов. Число таких элементов в сложном глазе насекомого является хорошим показателем его способности различать детали предметов.

Фото XI. Невидимые человеку медоуказчики.

А. Цветки лапчатки прямостоячей (Potentilla tormentilla = P. erecta), сфотографированные в обычном свете.

Б. Те же самые цветки, сфотографированные в ультрафиолетовом свете. Указатели меда помогают насекомым отыскать в цветках нектар.

Фото XII. Лосось перепрыгивает порог на пути к месту нереста. Он поднимается вверх по реке от самого ее устья, руководствуясь запахом воды из своего нерестилища.

Фото XIII. Крот, зажавший передними лапами свою добычу. Обратите внимание на вибриссы, которые хорошо видны на его мордочке. Предполагают, что они играют важную роль в жизни крота под землей, помогая ему обнаруживать самые различные колебания.

Фото XIV. Боковая линия карпов представляет собой ряд точек, расположенных вдоль боковой поверхности тела. Каждая точка - это крошечное отверстие, ведущее в трубочку, где находятся органы чувств. Прямо перед глазами находятся ноздри. Они представляют собой U-образные трубочки, в которых расположены органы обоняния, и не имеют никакого отношения к дыханию.

Фото XV. Пытаясь выбраться из сети, кузнечик сам предрешает свою гибель. Почувствовав колебания паутины, притаившийся паук быстро схватывает свою добычу.

Фото XVI. Самец сорной курицы регулирует температуру своего гнезда (которое нагревается либо за счет солнечного тепла, либо за счет тепла, выделяемого гниющими растениями), разгребая песок в стороны или набрасывая его на гнездо. Через 11 мес. из яиц вылупляются, птенцы и самостоятельно выбираются на поверхность.

Фото XVII. Лицевые ямки гремучей змеи расположены позади и несколько ниже ноздрей. Чувствительность этих ямок к инфракрасному свету позволяет змее ночью отыскивать добычу.

Фото XVIII. Ножетелка двигается в воде с помощью своего длинного почти прозрачного брюшного плавника, благодаря чему расположенный в ее хвосте электрический орган остается неподвижным. Электрический ток, вырабатываемый этим органом, помогает рыбе обнаруживать находящиеся поблизости объекты.

Из книги По следам Робинзона автора Верзилин Николай Михайлович

ГЛАВА IV. ОВОЩИ ЛЕСА И ПОЛЯ Белый картофель североамериканских индейцев Среди бесчисленного множества растений, которые покрывают поверхность суши и водную поверхность земного шара, нет, быть может, ни одного, которое с большим правом заслуживало бы внимания добрых

Из книги Новая наука о жизни автора Шелдрейк Руперт

Глава 4. Морфогенетические поля 4.1. Морфогенетические зародыши Морфогенез не происходит в вакууме. Он может начаться только с уже организованной системы, которая служит морфогенетическим зародышем. В процессе морфогенеза новая морфическая единица более высокого уровня

Из книги Семь экспериментов, которые изменят мир автора Шелдрейк Руперт

Глава 9. Движения и моторные поля 9.1. Введение В предыдущих главах обсуждалась роль формативной причинности в морфогенезе. В этой и двух последующих главах речь пойдет о роли формативной причинности в управлении движением.Некоторые движения растений и животных являются

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

9.6. Морфогенетические поля и моторные поля Несмотря на то что поля, контролирующие изменения формы специализированных двигательных структур животных, - это фактически морфогенетические поля, они вызывают, скорее, движения, нежели изменения формы. По этой причине

Из книги Пароль скрещенных антенн автора Халифман Иосиф Аронович

9.7. Моторные поля и чувства Посредством морфического резонанса животное попадает под влияние специфических моторных полей вследствие своей характерной структуры и внутренней организации колебательных процессов. Эти процессы изменяются в результате изменений,

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

ПОЛЯ ТЕРМИТНЫХ КОЛОНИЙ Предположение о том, что колонии термитов организуются под влиянием поля, вовсе не отрицает роли передачи информации между отдельными насекомыми с помощью обычных органов чувств. Подобно муравьям, термиты могут общаться друг с другом самыми

Из книги Тайная жизнь растений автора Томпкинс Питер

ФАНТОМНЫЕ ОЩУЩЕНИЯ И ПОЛЯ Все общепринятые научные теории создаются на основе концепции ограниченного разума: “схемы тела”, образы тела, фантомные ощущения существуют исключительно внутри головного мозга, как бы живо и непосредственно мы их ни воспринимали. Однако

Из книги Рассказы о биоэнергетике автора Скулачев Владимир Петрович

Из книги Энергия жизни [От искры до фотосинтеза] автора Азимов Айзек

ИЗ ЛЕСОВ - В ПОЛЯ И САДЫ! ЛЮБОПЫТНАЯ находка попалась археологам вблизи города Тебен, в Верхнем Египте. Здесь в дер эль Медине они открыли древнюю гробницу, относящуюся к эпохе фараонов, царствовавших примерно за полторы тысячи лет до нашей эры. Среди предметов, найденных

Из книги Мозг в электромагнитных полях автора Холодов Юрий Андреевич

Почему и как часто приходится пересоставлять магнитные карты земной поверхности? Известно, что магнитные полюсы Земли не совпадают с ее географическими полюсами, а потому направление магнитной стрелки (магнитная линия) не совпадает с направлением географического

Из книги Мы бессмертны! Научные доказательства Души автора Мухин Юрий Игнатьевич

Из книги автора

Электрический кабель цианобактерий Другая проблема, долго дожидавшаяся своего срока, - это передача энергии вдоль мембраны. С самого начала хемиосмотической эпопеи мне казалось очевидным, что разность электрических потенциалов весьма удобна для транспорта энергии в

Из книги автора

Глава 10. ЭЛЕКТРИЧЕСКИЙ ПУТЬ При оценке действия изменений свободной энергии на химические системы ход химической реакции проще рассматривать по аналогии с движением в гравитационном поле. Это вполне разумное решение, поскольку на всем протяжении предыдущей главы мы

Из книги автора

Глава 6. Электромагнитные поля меняют поведение Отмечено многочисленными исследователями, что разные ЭМП могут менять двигательную активность (ДА) организма, изменять чувствительность к раздражителям, нарушать формирование условных рефлексов и угнетать память. Все эти

Из книги автора

Глава 10. Собственные электромагнитные поля мозга О биопотенциалах мозга написаны тысячи научных и популярных статей и книг за те полвека, что прошли со времени начала регистрации электроэнцефалограммы человека немецким физиологом Г. Бергером.В те же годы советским

Из книги автора

Электрические и магнитные поля Из того перечня сил природы, которые могут участвовать в строительстве и осуществлении жизни тел организмов и формируют нас, людей (как личность - как сущность, которая имеет возможность хранить информацию и перерабатывать ее, а также

У некоторых рыб есть органы, вырабатывающие электрический ток. О таких рыбах знали еще в глубокой древности. Электрического сома изображали на гробницах в Древнем Египте 6 тыс. лет назад. Вероятно, уже тогда знали о лечебном действии его электрических разрядов. Прикладывать электрическую рыбу к телу больного рекомендовал и знаменитый древнеримский врач Гален.

Электрические органы этого сома, расположенные почти по всей длине тела рыбы, дают разряды напряжением до 360 В. А органы электрических скатов, живущих в тропических и субтропических водах океанов, производят целую серию разрядов, до сотни подряд, "напряжением до 220 В. Самые мощные электрические органы у электрических угрей, обитающих в реках тропической Америки. Их разряды достигают напряжения 650 В и силы около 2 А. Сила этих разрядов постепенно уменьшается до тех пор, пока они не прекращаются совсем. Для их "зарядки" требуется время. Сигналы к генерации электричества поступают в электрические органы по нервам.

Очень сильные разряды электрического ската торпедо защищают его от хищников - акул и осьминогов - и помогают скату охотиться за мелкой рыбой, которую эти разряды парализуют или даже убивают.


Расположение электрических органов у электрического ската

Электрические органы с мощными разрядами построены по принципу вольтова столба и служат для защиты и нападения. Разряды действуют на расстоянии до 6 м, парализуя рыб, моллюсков, ракообразных и других водных животных. Электрической рыбе остается только проглотить жертву.

Другая группа электрических рыб, например африканские мормирусы, испускает серию низковольтных импульсов, создавая вокруг себя электрическое поле. По искажению этого поля при попадании в него любого предмета рыбы находят в мутной воде добычу, особей противоположного пола или обнаруживают преграду.

Электрические органы в большинстве случаев состоят из особых клеток - электроцитов, происшедших в процессе эволюции из мышечных клеток.

В то время, как человечество научилось вырабатывать и применять в своих целях электричество всего пару столетий тому, некоторые из братьев наших меньших от природы получили столь необычный дар. Еще с незапамятных времен отдельные обитатели водоемов удивляли людей своими загадочными способностями. Таких животных боялись или боготворили, а их возможности находили применение даже в медицине. Естественно, в природе применение “животного электричества” ограничивается исключительно самозащитой или охотой, хотя способности некоторых организмов до сих пор недостаточно изучены.

Пожалуй, самым известным представителем фауны, обладающим подобными возможностями, является электрический скат. Специальные органы, вырабатывающие электричество с напряжением от 8 до 220 вольт (в зависимости от вида), у них расположены по бокам. Они используются преимущественно для самообороны, чтобы на время оглушить и обездвижить врага, или же для охоты. Обычно после разряда скату необходима перезарядка, поэтому некоторое время они являются вполне безвредными. Сами они никогда не нападают на людей и не представляют собой угрозу жизни, но их разряды могут быть весьма болезненными. Самым известным представителем вида является атлантический мраморный скат Торпедо (Torpedo marmorata).

Еще одним жителем вод, одаренным подобными способностями, является электрический угорь. Обитает он в основном в реках Южной Америки и считается очень опасным для людей: если сила тока и не способна убить, то лишить сознания — запросто. Электрические органы покрывают большую часть его тела, поэтому и разряд, который они производят намного больше (напряжение до до 1300 В) и опаснее. Дополнительно эта рыба имеет электрический орган, играющий роль локатора.

Электрический сом обитает в тропических и субтропических областях Африки и относится к сильноэлектрическим рыбам. На его теле также расположены электрические органы, способные производить ток напряжением до 450 В. Упоминания о необычных способностях сома часто встречаются в летописных источниках и фольклоре народов этого региона.

Помимо вышеперечисленных представителей водного мира, вырабатывать и использовать ток в своих целях могут многочисленные бактерии. К примеру недавно ученые обнаружили на дне океана странные электрические потоки. Как выяснилось в ходе исследования, их происхождение связано с жизнедеятельностью неизвестного вида микроорганизмов. Эти одноклеточные живут колониями, соединяясь в цепочки и образуя живой электрический , способный передавать электрические импульсы на значительные расстояния. Это открытие интересно не только микробиологам, но и исследователям из других областей знания. Оно еще раз подтверждает и без того несомненное могущество и непредсказуемость природы.

В реках морях и океанах живут несколько видов рыб, которые могут вырабатывать электрический ток. Как показали последние исследования, в настоящее время существует около трехсот видов рыб, вырабатывающих электричество. К таким рыбам относятся и электрический угорь.

Обитает электрический угорь в реках северо-восточной части Южной Америки и притоке среднего и нижнего течения Амазонки. Длина от 1 до 3 м, вес до 40 кг. Кожа у электрического угря голая, без чешуи, тело сильно удлинённое.

Интересным в структуре электрических угрей являются электрические органы, которые занимают около 4/5 длины тела. Угорь генерирует разряд напряжением до 1300 В и силой тока до 1 A. Положительный заряд находится в передней части тела, отрицательный - в задней. Удар током взрослого электрического угря способен оглушить лошадь

Электричество угорю нужно для:

  • защиты. Когда на угоря нападает хищник, она выпускает разряд электрического тока. Это отпугивает хищника или обездвиживает (парализует) его;
  • общения друг с другом. Угорь выпускает электрические разряды в воду, другие рыбы могут чувствовать их, таким образом, рыбы получают информацию о местонахождении своих собратьев, так же, одна особь может оповестить другую о приближении опасности;
    ориентирования в водном пространстве. При помощи тока угорь может определить расстояние до дна, камня или другого объекта, находящегося в воде;
  • охоты. При помощи электрического тока угорь добывает себе пищу. Когда мелкая рыбешка оказывается вблизи, хищник парализует ее током, рыбка не может двигаться, поэтому становится легкой добычей.

Откуда берется ток у рыб?

Электрический ток у рыб образуется в особых органах, которые называются «электрические органы». У каждого вида рыб электрические органы расположены по-разному. У одних рыб они находятся по бокам (например, электрический скат и угорь), у других в подкожном слое, практически по всей длине тела (например, электрический сом), у третьих рыб электрические органы находятся около глаз (американский звездочет).

Каждый электрический орган состоит из небольших пластин (именно в них и образуется электричество), которые собраны в столбики. Количество столбиков разное у каждого вида рыб, их может быть от нескольких десятков, до нескольких тысяч. В одну секунду рыба может вырабатывать от 10 до 600 электрических импульсов. Чем выше количество импульсов, тем больше вреда оно может доставить другим рыбам. Например, когда хищник охотится, он вырабатывает 500-600 импульсов, для защиты и отпугивания врагов достаточно 10-30 импульсов.