Рождение сверхновой. Взрыв сверхновой звезды

Что вы знаете о сверхновых звездах? Наверняка скажете, что сверхновая звезда является грандиозным взрывом звезды, на месте которой остаётся нейтронная звезда или чёрная дыра.

Однако на самом деле не все сверхновые являются конечной стадией жизни массивных звезд. Под современную классификацию сверхновых взрывов, помимо взрывов сверхгигантов, входят также некоторые другие явления.

Новые и сверхновые

Термин «сверхновая» перекочевал от термина «новая звезда». «Новыми» называли звезды, которые возникали на небосклоне практически на пустом месте, после чего постепенно угасали. Первые «новые» известны ещё по китайским летописям, датируемым вплоть до второго тысячелетия до нашей эры. Что интересно, среди этих новых нередко встречались сверхновые. К примеру, именно сверхновую в 1571 году наблюдал Тихо Браге, который впоследствии ввёл термин «новая звезда». Сейчас нам известно, что в обоих случаях речь не идёт о рождении новых светил в буквальном смысле.

Новые и сверхновые звезды обозначают резкое увеличение яркости какой-либо звезды или группы звезд. Как правило, раньше люди не имели возможности наблюдать звёзды, которые порождали эти вспышки. Это были слишком тусклые объекты для невооруженного глаза или астрономического прибора тех лет. Их наблюдали уже в момент вспышки, что естественно походило на рождение нового светила.

Не смотря на схожесть этих явлений, в наши дни существует резкое различие в их определениях. Пиковая светимость сверхновых звезд в тысячи и сотни тысяч раз больше пиковой светимости новых. Такое расхождение объясняется принципиальным различием природы этих явлений.

Рождение новых звезд

Новые вспышки являются термоядерными взрывами, происходящим в некоторых тесных звездных системах. Такие системы состоят из и более крупной звезды-компаньона (звезды главной последовательности, субгиганта или ). Могучее тяготение белого карлика притягивает вещество из звезды-компаньона, в результате чего вокруг него образуется аккреционный диск. Термоядерные процессы, происходящие в аккреционном диске, временами теряют стабильность и приобретают взрывной характер.

В результате такого взрыва яркость звездной системы увеличивается в тысячи, а то и в сотни тысяч раз. Так происходит рождение новой звезды. Доселе тусклый, а то и невидимый для земного наблюдателя объект приобретает заметную яркость. Как правило, своего пика такая вспышка достигает всего за несколько дней, а затухать может годами. Нередко такие вспышки повторяются у одной и той же системы раз в несколько десятилетий, т.е. являются периодичными. Также вокруг новой звезды наблюдается расширяющаяся газовая оболочка.

Сверхновые взрывы обладают совершенно иной и более разнообразной природой своего происхождения.

Сверхновые принято разделять на два основных класса (I и II). Эти классы можно назвать спектральными, т.к. их отличает присутствие и отсутствие линий водорода в их спектрах. Также эти классы заметно отличаются визуально. Все сверхновые I класса схожи как по мощности взрыва, так и по динамике изменения блеска. Сверхновые же II класса весьма разнообразны в этом плане. Мощность их взрыва и динамика изменения блеска лежит в весьма обширном диапазоне.

Все сверхновые II класса порождаются гравитационным коллапсом в недрах массивных звезд. Другими словами, этот тот самый, знакомый нам, взрыв сверхгигантов. Среди сверхновых первого класса существуют те, механизм взрыва которых скорее схож с взрывом новых звезд.

Смерть сверхгигантов

Сверхновыми становятся звезды, масса которых превышает 8-10 солнечных масс. Ядра таких звезд, исчерпав, водород, переходят к термоядерным реакциям с участием гелия. Исчерпав гелий, ядро переходит к синтезу всё более тяжелых элементов. В недрах звезды создаётся всё больше слоёв, в каждом из которых происходит свой тип термоядерного синтеза. В конечной стадии своей эволюции такая звезда превращается в «слоёный» сверхгигант. В его ядре происходит синтез железа, тогда как ближе к поверхности продолжается синтез гелия из водорода.

Слияние ядер железа и более тяжёлых элементов происходит с поглощением энергии. Поэтому, став железным, ядро сверхгиганта больше не способно выделять энергию для компенсации гравитационных сил. Ядро теряет гидродинамическое равновесие и приступает к беспорядочному сжатию. Остальные слои звезды продолжают поддерживать это равновесие, до тех пор, пока ядро не сожмётся до некого критического размера. Теперь гидродинамическое равновесие теряют остальные слои и звезда в целом. Только в этом случае «побеждает» не сжатие, а энергия, выделившая в ходе коллапса и дальнейших беспорядочных реакций. Происходит сброс внешней оболочки – сверхновый взрыв.

Классовые различия

Различные классы и подклассы сверхновых объясняются тем, какой звезда была до взрыва. К примеру, отсутствие водорода у сверхновых I класса (подкласса Ib, Ic) является следствие того, что водорода не было у самой звезды. Вероятнее всего, часть её внешней оболочки была потеряна в ходе эволюции в тесной двойной системе. Спектр подкласса Ic отличается от Ib отсутствием гелия.

В любом случае сверхновые таких классов происходят у звезд, не имеющих внешней водородно-гелиевой оболочки. Остальные же слои лежат в довольно строгих пределах своего размера и массы. Это объясняется тем, что термоядерные реакции сменяют друг друга с наступлением определенной критической стадии. Поэтому взрывы звезд Ic и Ib класса так похожи. Их пиковая светимость примерно в 1,5 миллиардов раз превышает светимость Солнца. Эту светимость они достигают за 2-3 дня. После этого их яркость в 5-7 раз слабеет за месяц и медленно уменьшается в последующие месяцы.

Звёзды сверхновых II типа обладали водородно-гелиевой оболочкой. В зависимости от массы звезды и других её особенностей это оболочка может иметь различные границы. Отсюда объясняются широкий диапазон в характерах сверхновых. Их яркость может колебаться от десятков миллионов до десятков миллиардов солнечных светимостей (исключая гамма-всплески – см. дальше). А динамика изменения яркость имеет самый различный характер.

Трансформация белого карлика

Особую категорию сверхновых составляет вспышки . Это единственный класс сверхновых звезд, который может происходить в эллиптических галактиках. Такая особенность говорит о том, что эти вспышки не являются продуктом смерти сверхгигантов. Сверхгиганты не доживают до того момента, как их галактики «состарятся», т.е. станут эллиптическими. Также все вспышки этого класса имеют практически одинаковую яркость. Благодаря этому сверхновые Ia типа являются «стандартными свечами» Вселенной.

Они возникают по отличительно иной схеме. Как отмечалось ранее, эти взрывы по своей природе чем-то сходны с новыми взрывами. Одна из схем их возникновения предполагает, что они также зарождаются в тесной системе белого карлика и его звезды-компаньона. Однако, в отличие от новых звезд, здесь происходит детонация иного, более катастрофического типа.

По мере «пожирания» своего компаньона, белый карлик увеличивается в массе до тех пор, пока не достигнет предела Чандрасекара. Этот предел, примерно равный 1,38 солнечной массы, является верхней границы массы белого карлика, после которого он превращается в нейтронную звезду. Такое событие сопровождается термоядерным взрывом с колоссальным выделением энергии, на много порядков превышающим обычный новый взрыв. Практически неизменное значение предела Чандрасекара объясняет столь малое расхождение в яркостях различных вспышек данного подкласса. Эта яркость почти в 6 миллиардов раз превышает солнечную светимость, а динамика её изменения такая же, как у сверхновых Ib, Ic класса.

Гиперновые взрывы

Гиперновыми называют вспышки, энергия которых на несколько порядков превышает энергию типичных сверхновых. То есть, по сути они гиперновые являются очень яркими сверхновыми.

Как правило, гиперновым считается взрыв сверхмассивных звезд, также называемых . Масса таких звезд начинается с 80 нередко превышает теоретический предел 150 солнечных масс. Также существуют версии, что гиперновые звезды могут образовываться в ходе аннигиляции антиматерии, образованию кварковой звезды или же столкновением двух массивных звезд.

Примечательны гиперновые тем, что они являются основной причиной, пожалуй, самых энергоёмких и редчайших событий во Вселенной – гамма-всплесков. Продолжительность гамма всплесков составляет от сотых секунд до нескольких часов. Но чаще всего они длятся 1-2 секунду. За эти секунды они испускают энергию, подобную энергии Солнца за все 10 миллиардов лет её жизни! Природа гамма-всплесков до сих пор по большей части остаётся под вопросом.

Прародители жизни

Несмотря на всю свою катастрофичность, сверхновые по праву можно назвать прародителями жизни во Вселенной. Мощность их взрыва подталкивает межзвездную среду на образования газопылевых облаков и туманностей, в которых впоследствии рождаются звезды. Ещё одна их особенность состоит в том, что сверхновые насыщают межзвездную среду тяжелыми элементами.

Именно сверхновые порождают все химические элементы, что тяжелее железа. Ведь, как отмечалось ранее, синтез таких элементов требует затрат энергии. Только сверхновые способны «зарядить» составные ядра и нейтроны на энергозатратные производство новых элементов. Кинетическая энергия взрыва разносит их по пространству вместе с элементами, образовавшимися в недрах взорвавшейся звезды. В их число входят углерод, азот и кислород и прочие элементы, без которых невозможна органическая жизнь.

Наблюдение за сверхновыми

Сверхновые взрывы являются крайне редкими явлениями. В нашей галактике, содержащей более сотни миллиардов звёзд, происходит всего лишь несколько вспышек за столетие. Согласно летописным и средневековым астрономическим источникам, за последние две тысячи лет были зафиксированы лишь шесть сверхновых, видимых невооруженным глазом. Современным астрономам ни разу не доводилось наблюдать сверхновых в нашей галактике. Наиболее ближайшая произошла в 1987 в Большом Магеллановым Облаке, в одном из спутников Млечного Пути. Каждый год учёные наблюдают до 60 сверхновых, происходящих в других галактиках.

Именно из-за этой редкости сверхновые практически всегда наблюдаются уже в момент вспышки. События, предшествующие ей почти никогда не наблюдались, поэтому природа сверхновых до сих пор во многом остаётся загадочной. Современная наука не способна достаточно точно спрогнозировать сверхновые. Любая звезда-кандидат способна вспыхнуть лишь через миллионы лет. Наиболее интересна в этом плане Бетельгейзе, которая имеет вполне реальную возможность озарить земное небо на нашем веку.

Вселенские вспышки

Гиперновые взрывы случаются ещё реже. В нашей галактике такое событие случаются раз в сотни тысяч лет. Однако, гамма-всплески, порождаемые гиперновыми, наблюдаются почти ежедневно. Они настолько мощны, что регистрируются практически со всех уголков Вселенной.

К примеру, один из гамма-всплесков, расположенных в 7,5 миллиардов световых лет, можно было разглядеть невооружённым глазом. Произойти он в галактике Андромеда, земное небо на пару секунд осветила звезда с яркостью полной луны. Произойти он на другом краю нашей галактики, на фоне Млечного Пути появилось бы второе Солнце! Получается, яркость вспышки в квадриллионы раз ярче Солнца и в миллионы раз ярче нашей Галактики. Учитывая, что галактик во Вселенной миллиарды, неудивительно, почему такие события регистрируются ежедневно.

Влияние на нашу планету

Маловероятно, что сверхновые могут нести угрозу современному человечеству и каким-либо образом повлиять на нашу планету. Даже взрыв Бетельгейзе лишь осветит наше небо на несколько месяцев. Однако, безусловно, они решающим образом влияли на нас в прошлом. Примером тому служит первое из пяти массовых вымираний на Земле, произошедших 440 млн. лет назад. По одной из версий причиной этому вымиранию послужил гамма-вспышка, произошедшая в нашей Галактике.

Более примечательна совсем иная роль сверхновых. Как уже отмечалось, именно сверхновые создают химические элементы, необходимые для появления углеродной жизни. Земная биосфера не была исключением. Солнечная система сформировалось в газовом облаке, которые содержали осколки былых взрывов. Получается, мы все обязаны сверхновым своим появлением.

Более того, сверхновые и в дальнейшем влияли на эволюцию жизни на Земле. Повышая радиационный фон планеты, они заставляли организмы мутировать. Не стоит также забывать про крупные вымирания. Наверняка сверхновые не единожды «вносили коррективы» в земную биосферу. Ведь не будь тех глобальный вымираний, на Земле бы сейчас господствовали совсем другие виды.

Масштабы звездных взрывов

Чтобы наглядно понять, какой энергией обладают сверхновые взрывы, обратимся к уравнению эквивалента массы и энергии. Согласно нему, в каждом грамме материи заключено колоссальное количество энергии. Так 1 грамм вещества эквивалентен взрыву атомной бомбы, взорванной над Хиросимой. Энергия царь-бомбы эквивалента трём килограммам вещества.

Каждую секунду ходе термоядерных процессов в недрах Солнца 764 миллиона тонн водорода превращается в 760 миллион тонн гелия. Т.е. каждую секунду Солнце излучает энергию, эквивалентную 4 млн. тоннам вещества. Лишь одна двухмиллиардная часть всей энергии Солнца доходит до Земли, это эквивалентно двум килограммам массы. Поэтому говорят, что взрыв царь-бомбы можно было наблюдать с Марса. К слову, Солнце доставляет на Землю в несколько сотен раз больше энергии, чем потребляет человечество. То есть, чтобы покрыть годовые энергетические потребности всего современного человечества нужно превращать в энергию всего несколько тонн материи.

Учитывая вышесказанное, представим, что средняя сверхновая в своём пике «сжигает» квадриллионы тон вещества. Это соответствует массе крупного астероида. Полная же энергия сверхновой эквивалентна массе планеты или даже маломассивной звезды. Наконец, гамма-всплеск за секунды, а то и за доли секунды своей жизни, выплёскивает энергию, эквивалентную массе Солнца!

Такие разные сверхновые

Термин «сверхновая» не должен ассоциироваться исключительно с взрывом звёзд. Эти явления, пожалуй, также разнообразны, как разнообразны сами звёзды. Науке только предстоит понять многие их секреты.

Сверхновая звезда – взрыв умирающих очень крупных звезд с огромным выбросом энергии, в триллион раз превышающая энергию Солнца. Сверхновая звезда может осветить всю галактику, а свет, посланный звездой, дойдет то края Вселенной.Если одна из таких звезд взорвется на расстоянии 10 световых лет от Земли, то Земля полностью сгорит от выбросов энергии и радиации.

Сверхновая звезда

Сверхновые звезды не только уничтожают, они так же восполняют необходимые элементы в космос: железо, золото, серебро и другие. Всё что мы знаем о Вселенной было создано из останков когда-то взорвавшейся сверхновой звезды. Сверхновая один из самых красивых и интересных объектов во Вселенной. Самые крупные взрывы во Вселенной оставляют после себя особые, самые странные останки во Вселенной:

Нейтронные звезды

Нейтронные очень опасные и странные тела. Когда гигантская звезда превращается в сверхновую, ее ядро сжимается до размера с земной мегаполис. Давление внутри ядра настолько велико, что даже атомы внутри начинают плавиться. Когда атомы настолько спрессованы, что между ними не остается никакого пространства накапливается колоссальная энергия и происходит мощнейший взрыв. После взрыва остается невероятно плотная Нейтронная звезда. Чайная ложка Нейтронной звезды будет весить 90 млн. тонн.

Пульсар – останки после взрыва сверхновой звезды. Тело которое схожее с массой и плотностью нейтронной звезды. Вращаясь с огромной скоростью, пульсары выпускают в космос радиационные вспышки из северного и южного полюсов. Скорость вращения может достигать 1000 оборотов в секунду.

Когда взрывается звезда в 30 раз больше нашего Солнца она создает звезду, которая называется Магнитаром. Магнитары создают мощные магнитные поля они еще более странные чем Нейтронные звезды и Пульсары. Магнитное поле Магнитара превышает земное в несколько тысяч раз.

Черные дыры

После гибели гиперновых звезд, звезд еще более крупнее чем суперзвезда, образуется самое загадочное и опасное место во Вселенной – черная дыра. После смерти такой звезды, черная дыра начинает поглощать ее останки. Материала для поглощения у черной дыры слишком много и она выбрасывает останки звезды обратно в космос, образуя 2 луча гамма излучений.

Что касается нашей , то Солнце, конечно, не обладает достаточной массой для того, чтобы стать черной дырой, пульсаром, магнитаром или даже нейронной звездой. По космическим меркам наша звезда очень мала для такого финала её жизни. Ученые говорят о том, что после истощения топлива наша звезда увеличится в размерах в несколько десятков раз, что позволит ей поглотить в себя планеты земной группы: Меркурий, Венеру, Землю и, возможно, Марс.

> Сверхновая звезда

Узнайте, что такое сверхновая звезда : описание взрыва и вспышки звезды, где рождаются сверхновые, эволюция и развитие, роль двойных звезд, фото и исследования.

Сверхновая – это, по сути, звездный взрыв и наиболее сильный, который можно наблюдать в космическом пространстве.

Где появляются сверхновые звезды?

Очень часто сверхновые можно заметить в других галактиках. Но в нашем Млечном Пути это редкое явление для наблюдения, потому что пылевые и газовые дымки перекрывают обзор. Последняя наблюдаемая сверхновая в была замечена Иоганном Кеплером в 1604 году. Телескоп Чандра смог отыскать лишь остатки от звезды, взорвавшейся больше века назад (последствия взрыва сверхновой).

Что приводит к сверхновой?

Сверхновая звезда рождается, когда в центре звезды происходят изменения. Есть два главных типа.

Первый – в двойных системах. Двойные звезды – объекты, связанные общим центром. Одна из них подворовывает вещество у второй и становится чересчур массивной. Но не способна уравновесить внутренние процессы и взрывается в сверхновой.

Второй – в момент смерти. Топливо имеет свойство заканчиваться. В итоге, часть массы начинает поступать в ядро, и оно становится таким тяжелым, что не выдерживает собственной гравитации. Происходит процесс расширения, и звезда взрывается. Солнце – одиночная звезда, но ей не пережить подобного, так как не хватает массы.

Почему исследователи интересуются сверхновыми звездами?

Сам процесс охватывает небольшой временной промежуток, но может очень многое поведать о Вселенной. Например, один из экземпляров подтвердил свойство Вселенной расширяться и то, что темпы увеличиваются.

Также выяснилось, что эти объекты влияют на момент распределения элементов в пространстве. При взрыве звезда выстреливает элементами и космическими обломками. Многие из них даже попадают на нашу планету. Посмотрите видео, в котором раскрываются особенности сверхновых звезд и их взрывов.

Наблюдения вспышек сверхновых

Астрофизик Сергей Блинников об открытии первой сверхновой звезды, остатках после вспышки и современных телескопах

Как их найти сверхновые звезды?

Для процесса поиска сверхновых звезд исследователи используют различные приборы. Некоторые нужны для наблюдения за видимым светом после взрыва. А другие отслеживают рентгеновские и гамма-лучи. Фото получают при помощи телескопов Хаббл и Чандра.

В июне 2012 года начал работать телескоп, фокусирующий свет в области высоких энергий электромагнитного спектра. Речь идет о миссии NuSTAR, которая ищет разрушившиеся звезды, черные дыры и остатки сверхновых. Ученые планируют узнать побольше о том, как они взрываются и создаются.

Измерение расстояний до небесных тел

Астроном Владимир Сурдин о цефеидах, вспышках сверхновых звезд и скорости расширения Вселенной:

Чем вы можете помочь в исследовании сверхновых звезд?

Для того, чтобы внести свою лепту, вам не нужно становиться ученым. В 2008 году сверхновую нашел обычный подросток. В 2011 году это повторила 10-летняя канадская девочка, рассматривавшая снимок ночного неба на своем компьютере. Очень часто снимки любителей вмещают множество интересных объектов. Немного практики и вы можете найти следующую сверхновую! А если говорить точнее, то у вас есть все шансы запечатлеть взрыв сверхновой звезды.

Мы уже видели, что, в отличие от Солнца и других стационарных звезд, у физических переменных звезд изменяются размеры, температура фотосферы, светимость. Среди различных видов нестационарных звезд особый интерес представляют новые и сверхновые звезды. На самом деле это не вновь появившиеся звезды, а ранее существовавшие, которые привлекли к себе внимание резким возрастанием блеска.

При вспышках новых звезд блеск возрастает в тысячи и миллионы раз за время от нескольких суток до нескольких месяцев. Известны звезды, которые повторно вспыхивали как новые. Согласно современным данным, новые звезды обычно входят в состав двойных систем, а вспышки одной из звезд происходят в результате обмена веществом между звездами, образующими двойную систему. Например, в системе “белый карлик – обычная звезда (малой светимости)” взрывы, вызывающие явление новой звезды, могут возникать при падении газа с обычной звезды на белый карлик.

Еще более грандиозны вспышки сверхновых звезд, блеск которых внезапно возрастает примерно на 19 m ! В максимуме блеска излучающая поверхность звезды приближается к наблюдателю со скоростью в несколько тысяч километров в секунду. Картина вспышки сверхновых звезд свидетельствует о том, что сверхновые – это взрывающиеся звезды.

При взрывах сверхновых в течение нескольких суток выделяется огромная энергия – порядка 10 41 Дж. Такие колоссальные взрывы происходят на заключительных этапах эволюции звезд, масса которых в несколько раз больше массы Солнца.

В максимуме блеска одна сверхновая звезда может светить ярче миллиарда звезд, подобных нашему Солнцу. При наиболее мощных взрывах некоторых сверхновых звезд может выбрасываться вещество со скоростью 5000 – 7000 км/с, масса которого достигает нескольких солнечных масс. Остатки оболочек, сброшенных сверхновыми звездами, видны долгое время как расширяющиеся газовые .

Обнаружены не только остатки оболочек сверхновых звезд, но и то, что осталось от центральной части некогда взорвавшейся звезды. Такими “звездными остатками” оказались удивительные источники радиоизлучения, которые получили названия пульсаров. Первые пульсары были открыты в 1967 г.

У некоторых пульсаров поразительно стабильна частота повторения импульсов радиоизлучения: импульсы повторяются через строго одинаковые промежутки времени, измеренные с точностью, превышающей 10 -9 с! Открытые пульсары находятся от нас на расстояниях, не превышающих сотни парсек. Предполагается, что пульсары – это быстровращающиеся сверхплотные звезды, радиусы которых около 10 км, а массы близки к массе Солнца. Такие звезды состоят из плотно упакованных нейтронов и называются нейтронными. Лишь часть времени своего существования нейтронные звезды проявляют себя как пульсары.

Вспышки сверхновых звезд относятся к редким явлениям. За последнее тысячелетие в нашей звездной системе наблюдалось всего лишь несколько вспышек сверхновых. Из них наиболее достоверно установлены следующие три: вспышка 1054 г. в созвездии Тельца, в 1572 г. – в созвездии Кассиопеи, в 1604 г. – в созвездии Змееносца. Первая из этих сверхновых описана как “звезда-гостья” китайскими и японскими астрономами, вторая – Тихо Браге, а третью наблюдал Иоганн Кеплер. Блеск сверхновых 1054 г. и 1572 г. превосходил блеск Венеры, и эти звезды были видны днем. Со времени изобретения телескопа (1609 г.) в нашей звездной системе не наблюдалось ни одной сверхновой звезды (возможно, что некоторые вспышки остались незамеченными). Когда же появилась возможность исследовать другие звездные системы, в них стали часто открывать новые и сверхновые звезды.

23 февраля 1987 г. сверхновая звезда вспыхнула в Большом Магеллановом Облаке (созвездие Золотой Рыбы) – самом большом спутнике нашей Галактики. Впервые после 1604 г. сверхновую звезду можно было видеть даже невооруженным глазом. До вспышки на месте сверхновой находилась звезда 12-й звездной величины. Максимального блеска 4 m звезда достигла в начале марта, а затем стала медленно угасать. Ученым, наблюдавшим сверхновую с помощью телескопов крупнейших наземных обсерваторий, орбитальной обсерватории “Астрон” и рентгеновских телескопов на модуле “Квант” орбитальной станции “Мир”, удалось впервые проследить весь процесс вспышки. Наблюдения проводились в разных диапазонах спектра, включая видимый оптический диапазон, ультрафиолетовый, рентгеновский и радиодиапазоны. В научной печати появлялись сенсационные сообщения о регистрации нейтринного и, возможно, гравитационного излучения от взорвавшейся звезды. Были уточнены и обогащены новыми результатами модели строения звезды в фазе, предшествующей взрыву.

Моделирование ситуации рождения сверхновой — нелегкое дело. По крайней мере, до недавнего времени все эксперименты терпели крах. Но астрофизикам все-таки удалось взорвать звезду.

11 ноября 1572 г. астроном Тихо Браге (Tycho Brahe ) заметил в созвездии Кассиопеи новую звезду, сияющую так же ярко, как Юпитер. Пожалуй, именно тогда рухнула уверенность в том, что небеса вечны и неизменны, и родилась современная астрономия. Спустя четыре века астрономы поняли, что некоторые звезды, вдруг становясь в миллиарды раз ярче обычных, взрываются. В 1934 г. Фриц Цвикки (Fritz Zwicky ) из Калифорнийского технологического института назвал их «сверхновыми». Они снабжают космическое пространство во Вселенной тяжелыми элементами, управляющими формированием и эволюцией галактик, и помогают изучать расширение пространства.

Цвикки и его коллега Вальтер Бааде (Walter Baade ) предположили, что энергию для взрыва дает звезде гравитация. По их мнению, звезда сжимается, пока ее центральная часть не достигнет плотности атомного ядра. Коллапсирующее вещество может выделить гравитационную потенциальную энергию, достаточную чтобы выбросить наружу ее остатки. В 1960 г. Фред Хойл (Fred Hoyle ) из Кембриджского университета и Вилли Фаулер (Willy Fowler ) из Калтеха считали, что сверхновые похожи на гигантскую ядерную бомбу. Когда звезда типа Солнца сжигает свое водородное, а затем и гелиевое топливо, наступает очередь кислорода и углерода. Синтез этих элементов не только обеспечивает гигантский выброс энергии, но и производит радиоактивный никель-56, распад которого может объяснить послесвечение взрыва, длящееся несколько месяцев.

Обе идеи оказались правильными. В спектрах некоторых сверхновых нет следов водорода (обозначаются как тип I); по-видимому, у большинства из них произошел термоядерный взрыв (тип Iа ), а у остальных (типы Ib и Ic ) — коллапс звезды, сбросившей свой внешний водородный слой. Сверхновые, в спектрах которых обнаружен водород (тип II), также возникают в результате коллапса. Оба явления превращают звезду в разлетающееся газовое облако, а гравитационный коллапс приводит к образованию сверхплотной нейтронной звезды или даже черной дыры. Наблюдения, в особенности сверхновой 1987А (тип II), подтверждают предложенную теорию.

Однако до сих пор взрыв сверхновой остается одной из главных проблем астрофизики. Компьютерные модели воспроизводят его с трудом. Очень сложно заставить звезду взорваться (что само по себе приятно). Звезды — саморегулирующиеся объекты, которые остаются стабильными в течение миллионов и миллиардов лет. Даже умирающие светила имеют механизмы затухания, но не взрыва. Чтобы воспроизвести последний, потребовались многомерные модели, расчет которых был вне возможностей компьютеров.

Взрыв — дело нелегкое

Белые карлики — это неактивные остатки звезд, похожих на Солнце, которые постепенно остывают и затухают. Они могут взрываться как сверхновые типа Ia . Однако, по мнению Хойла и Фаулера, если белый карлик вращается вокруг другой звезды на близкой орбите, он может аккретировать (отсасывать) вещество со своего компаньона, увеличивая тем самым свою массу, центральную плотность и температуру до такой степени, что возможен взрывной синтез из углерода и кислорода.

Термоядерные реакции должны вести себя как обычный огонь. Фронт горения может распространяться через звезду, оставляя за собой «ядерный пепел» (в основном — никель). В каждый момент времени реакции синтеза должны идти в небольшом объеме, в основном — в тонком слое на поверхности пузырей, заполненных «пеплом» и плавающих в глубине белого карлика. Из-за своей низкой плотности пузыри могут всплывать к поверхности звезды.

Но термоядерное пламя будет гаснуть, поскольку выделение энергии приводит к расширению и охлаждению звезды, гася ее горение. В отличие от обычной бомбы, у звезды нет оболочки, ограничивающей ее объем.

Кроме того, в лаборатории невозможно воссоздать взрыв сверхновой, его можно только наблюдать в космосе. Наша группа провела тщательное моделирование, используя суперкомпьютер IBM p690 . Численная модель звезды была представлена расчетной сеткой, имевшей 1024 элемента по каждой из сторон, что позволило разрешить детали размером в несколько километров. Каждый вычислительный сет потребовал более чем 10 20 арифметических операций; с такой задачей мог справиться лишь суперкомпьютер, проделывающий более 10 11 операций в секунду. В итоге все это заняло почти 60 процессоро-лет. Различные вычислительные ухищрения, упрощающие модель и используемые в других областях науки, неприменимы к сверхновым с их асимметричными течениями, экстремальными условиями и гигантским пространственным и температурным диапазоном. Физика частиц, ядерная физика, гидродинамика и теория относительности очень сложны, а модели сверхновых должны оперировать ими одновременно.

Под капотом

Решение пришло с неожиданной стороны — при изучении работы автомобильного двигателя. Перемешивание бензина и кислорода и их воспламенение создают турбулентность, которая, в свою очередь, увеличивает поверхность горения, интенсивно деформируя ее. При этом скорость сжигания топлива, пропорциональная площади горения, возрастает. Но и звезда тоже турбулентна. Потоки газа проходят в ней огромные расстояния с большой скоростью, поэтому малейшие возмущения быстро превращают спокойное течение в турбулентный поток. В сверхновой всплывающие горячие пузыри должны перемешивать вещество, заставляя ядерное горение распространяться так быстро, что звезда не успеет перестроиться и «затушить» пламя.

В исправно работающем двигателе внутреннего сгорания пламя распространяется с дозвуковой скоростью, ограниченной скоростью диффузии тепла сквозь вещество — такой процесс называют дефлаграцией, или быстрым горением. В «стреляющем» двигателе пламя распространяется со сверхзвуковой скоростью в виде ударной волны, проносящейся по кислородно-топливной смеси и сжимающей ее (детонация). Термоядерное пламя может распространяться тоже двумя путями. Детонация способна полностью сжечь звезду, оставив только самые «негорючие» элементы, такие как никель и железо. Однако в продуктах этих взрывов астрономы обнаруживают большое разнообразие элементов, включая кремний, серу и кальций. Следовательно, ядерное горение распространяется, по крайней мере, в начале, как дефлаграция.

В последние годы были созданы надежные модели термоядерной дефлаграции. Исследователи из Калифорнийского (г. Санта-Круз), Чикагского университетов и наша группа опирались при этом на программы, созданные для исследования химического горения и даже для прогноза погоды. Турбулентность — принципиально трехмерный процесс. В турбулентном каскаде кинетическая энергия перераспределяется от больших масштабов к малым и, в конце концов, рассеивается в виде тепла. Исходный поток дробится на все более и более мелкие части. Поэтому моделирование непременно должно быть трехмерным.

Модель сверхновой имеет грибообразный вид: горячие пузыри поднимаются в слоеной среде, сморщиваясь и растягиваясь турбулентностью. Усиленный ею рост скорости ядерных реакций за несколько секунд приводит к разрушению белого карлика, остатки которого разлетаются со скоростью около 10 тыс. км/с, что соответствует наблюдаемой картине.

Но до сих пор не ясно, отчего воспламеняется белый карлик. Кроме того, дефлаграция должна выбрасывать большую часть вещества карлика неизмененной, а наблюдения показывают, что лишь малая часть звезды не изменяется. Вероятно, взрыв обусловлен не только быстрым горением, но и детонацией, а причина сверхновых типа Ia — не только аккреция вещества на белый карлик, но и слияние двух белых карликов.

Гравитационная могила

Другой тип сверхновых, вызванный коллапсом звездного ядра, объяснить труднее. С наблюдательной точки зрения эти сверхновые более разнообразны, чем термоядерные: одни из них имеют водород, другие нет; одни взрываются в плотной межзвездной среде, другие — в почти пустом пространстве; одни выбрасывают огромное количество радиоактивного никеля, другие нет. Энергия выброса и скорость расширения также различаются. Самые мощные из них производят не только классический взрыв сверхновой, но и продолжительный гамма-всплеск (см.: Герелс Н., Леонард П. и Пиро Л. Ярчайшие взрывы во Вселенной // ВМН, № 4, 2003). Эта неоднородность свойств — одна из многих загадок. Сверхновые с коллапсом ядра — основные кандидаты для формирования самых тяжелых элементов, таких как золото, свинец, торий и уран, которые могут образоваться только в особых условиях. Но никто не знает, действительно ли такие предпосылки возникают в звезде, когда ее ядро взрывается.

Несмотря на то, что идея коллапса кажется простой (при сжатии ядра выделяется энергия гравитационной связи, за счет которой выбрасываются внешние слои вещества), трудно понять процесс в деталях. В конце жизни у звезды с массой более 10 масс Солнца образуется слоеная структура, с глубиной появляются слои все более тяжелых элементов. Ядро состоит в основном из железа, а равновесие звезды поддерживается квантовым отталкиванием электронов. Но в конце концов масса звезды подавляет электроны, которые вжимаются в атомные ядра, где начинают реагировать с протонами и образовывать нейтроны и электронные нейтрино. В свою очередь, нейтроны и оставшиеся протоны прижимаются друг к другу все сильнее, пока их собственная сила отталкивания не начнет действовать и не остановит коллапс.

В этот момент сжатие останавливается и сменяется расширением. Вещество, втянутое вглубь гравитацией, начинает частично вытекать наружу. В классической теории данная задача решается с помощью ударной волны, которая возникает, когда внешние слои звезды со сверхзвуковой скоростью налетают на ядро, внезапно замедлившее свое сжатие. Ударная волна движется наружу, сжимая и нагревая вещество, с которым она сталкивается, и в то же время теряет свою энергию, в конце концов затухая. Моделирование показывает, что энергия сжатия быстро рассеивается. Как же в таком случае звезда взрывает себя?

Первой попыткой разрешить задачу стала работа Стирлинга Колгейта (Stirling Colgate ) и Ричарда Уайта (Richard White ) 1966 г., а позже — компьютерные модели Джима Вильсона (Jim Wilson ), созданные им в начале 1980-х гг., когда все трое работали в Ливерморской национальной лаборатории им. Лоуренса. Они предположили, что ударная волна — не единственный переносчик энергии от ядра к внешним слоям звезды. Возможно, вспомогательную роль играют нейтрино, рожденные во время коллапса. На первый взгляд, идея выглядит странной: как известно, нейтрино чрезвычайно неактивны, они так слабо взаимодействуют с другими частицами, что их даже трудно зарегистрировать. Но в сжимающейся звезде они обладают более чем достаточной энергией, чтобы вызвать взрыв, а в условиях предельно высокой плотности неплохо взаимодействуют с веществом. Нейтрино нагревают слой вокруг коллапсирующего ядра сверхновой, поддерживая давление в тормозящейся ударной волне.

Сверхновая с коллапсом ядра

  1. Сверхновые другого рода образуются при сжатии звезд с массами более 8 масс Солнца. Они относятся к типам Ib , Ic или II, в зависимости от наблюдаемых особенностей
  2. Массивная звезда в конце жизни имеет слоистую структуру из разных химических элементов
  3. Железо не участвует в ядерном синтезе, поэтому в ядре не выделяется тепло. Газовое давление падает, и лежащее выше вещество устремляется вниз
  4. За секунду ядро сжимается и превращается в нейтронную звезду. Падающее вещество отскакивает от нейтронной звезды и создает ударную волну
  5. Нейтрино вырывается из новорожденной нейтронной звезды, неравномерно подталкивая наружу ударную волну
  6. Ударная волна проносится по звезде, разрывая ее на части

Как ракета

Но достаточно ли такого дополнительного толчка для поддержания волны и завершения взрыва? Компьютерное моделирование показывало, что недостаточно. Несмотря на то, что газ и поглощает нейтрино, и излучает их; модели показывали, что потери доминируют, и поэтому взрыв не получается. Но в этих моделях было одно упрощение: звезда в них считалась сферически симметричной. Поэтому игнорировались многомерные явления, такие как конвекция и вращение, которые очень важны, поскольку наблюдаемые сверхновые порождают весьма несферичный, «лохматый» остаток.

Многомерное моделирование показывает, что вокруг ядра сверхновой нейтрино нагревают плазму и создают в ней всплывающие пузыри и грибообразные потоки. Конвекция переносит энергию к ударным волнам, толкая их вверх и вызывая взрыв.

Когда взрывная волна немного замедляется, пузыри горячей расширяющейся плазмы, разделенные текущим вниз холодным веществом, сливаются. Постепенно образуются один или несколько пузырей в окружении нисходящих потоков. В результате взрыв становится асимметричным. Кроме того, заторможенная ударная волна может деформироваться, и тогда коллапс принимает форму песочных часов. Дополнительная неустойчивость возникает, когда ударная волна вырывается наружу и проходит через неоднородные слои предка сверхновой. При этом химические элементы, синтезированные на протяжении жизни звезды и во время взрыва, перемешиваются.

Поскольку остатки звезды в основном вылетают в одну сторону, находящаяся в центре нейтронная звезда отскакивает в другую, как скейтборд, откатывающийся назад, когда вы спрыгиваете с него. Наша компьютерная модель показывает скорость отскока более 1000 км/с, что соответствует наблюдаемому движению многих нейтронных звезд. Но некоторые из них движутся медленнее, вероятно, потому, что пузыри во время образовавшего их взрыва не успели слиться. Возникает единая картина, в которой различные варианты становятся результатом одного основного эффекта.

Несмотря на значительные достижения последних лет, ни одна из существующих моделей не воспроизводит весь комплекс явлений, связанных со взрывом сверхновой, и содержит упрощения. Полная версия должна использовать семь измерений: пространство (три координаты), время, энергия нейтрино и скорость нейтрино (описанную двумя угловыми координатами). Более того, это нужно сделать для всех трех типов, или ароматов нейтрино.

Но может ли взрыв быть спровоцирован различными механизмами? Ведь магнитное поле может перехватить вращательную энергию только что сформировавшейся нейтронной звезды и дать новый толчок ударной волне. Кроме того, оно будет выдавливать вещество наружу вдоль оси вращения в виде двух полярных джетов. Эти эффекты позволят объяснить наиболее мощные взрывы. В частности, гамма-всплески могут быть связаны с джетами, движущимися с околосветовой скоростью. Возможно, ядра таких сверхновых коллапсируют не в нейтронную звезду, а в черную дыру.

Пока теоретики улучшают свои модели, наблюдатели пытаются использовать не только электромагнитное излучение, но также нейтрино и гравитационные волны. Коллапс ядра звезды, его бурление в начале взрыва и его возможное превращение в черную дыру приводят не только к интенсивному выбросу нейтрино, но и сотрясают структуру пространства-времени. В отличие от света, который не может пробиться сквозь вышележащие слои, эти сигналы исходят прямо из бурлящего ада в центре взрыва. Созданные недавно детекторы нейтрино и гравитационных волн могут приоткрыть завесу над тайной смерти звезд.

Реактивный эффект сверхновой

Наблюдатели гадали, почему нейтронные звезды несутся по Галактике с огромной скоростью. Новые модели сверхновой с коллапсом ядра предлагают объяснение, основанное на внутренней асимметрии этих взрывов

Моделирование показывает, что асимметрия развивается уже в начале взрыва. Малые различия в начале коллапса звезды приводят к большим различиям в степени асимметрии

  • Каплан С.А. Физика звезд. М.: Наука, 1977.
  • Псковский Ю.П. Новые и сверхновые звезды. М.: Наука, 1985.
  • Шкловский И.С. Сверхновые звезды и связанные с ними проблемы. М.: Наука, 1976.
  • Supernova Explosions in the Universe. A. Burrows in Nature, Vol. 403, pages 727-733; February 17, 2000.
  • Full-Star Type Ia Supernova Explosion Models. F.K. Röpke and W. Hillebrandt in Astronomy and Astrophysics, Vol. 431, No. 2, pages 635-645; February 2005. Preprint available at arxiv.org/abs/astro-ph/0409286
  • The Physics of Core-Collapse Supernovae. S. Woosley and H.-Th. Janka in Nature Physics, Vol. 1, No. 3, pages 147-154; December 2005. Preprint available at arxiv.org/abs/astro-ph/0601261
  • Multidimensional Supernova Simulations with Approximative Neutrino Transport. L. Scheck, K. Kifonidis, H.-Th. Janka and E. Müller in Astronomy and Astrophysics (in press). Preprint available at arxiv.org/abs/astro-ph/0601302