Движение тектонических плит. Движение литосферных плит. Тектоническая плита Кокос

Тектоника плит

Определение 1

Тектоническая плита – это движущаяся часть литосферы, которая перемещается на астеносфере как относительно жесткий блок.

Замечание 1

Тектоника плит – наука, изучающая структуру и динамику поверхности земли. Установлено, что верхняя динамическая зона Земли фрагментирована в плиты, движущиеся по астеносфере. Тектоника плит описывает, в каком направлении перемещаются литосферные плиты, а также особенности их взаимодействия.

Вся литосфера разделена на большие и более мелкие плиты. Тектоническая, вулканическая и сейсмическая активность проявляется по краям плит, что ведет к формированию крупных горных бассейнов. Тектонические движения способны изменять рельеф планеты. В месте их соединения формируются горы и возвышенности, в местах расхождения образуются впадины и трещины в земле.

В настоящее время движение тектонических плит продолжается.

Движение тектонических плит

Литосферные плиты перемещаются относительно друг друга в среднем со скоростью 2,5 см в год. При движении плиты между собой взаимодействуют, особенно вдоль границ, вызывая значительные деформации в земной коре.

В результате взаимодействия тектонических плит между собой образовались массивные горные хребты и связанные с ними системы разломов (например, Гималаи, Пиренеи, Альпы, Урал, Атлас, Аппалачи, Апеннины, Анды, система разломов Сан-Андреас и др.).

Трение между плитами вызывает большую часть землетрясений на планете, вулканическую активность и образование океанических ям.

В состав тектонических плит входит два типа литосферы: континентальная кора и океаническая кора.

Тектоническая плита может быть трех типов:

  • континентальная плита,
  • океаническая плита,
  • смешанная плита.

Теории движения тектонических плит

В изучении движения тектонических плит особая заслуга принадлежит А. Вегенеру, предположившему, что Африка и восточная часть Южной Америки ранее были единым континентом. Однако после произошедшего много млн. лет назад разлома, начался сдвиг частей земной коры.

Согласно гипотезе Вегенера, тектонические платформы, обладающие разной массой и имеющие жесткую структуру, размещались на пластичной астеносфере. Они пребывали в неустойчивом состоянии и все время перемещались, в результате чего сталкивались, заходили друг на друга, формировались зоны раздвижения плит и стыки. В местах столкновений формировались участки с повышенной тектонической активностью, образовывались горы, извергались вулканы и происходили землетрясения. Смещение происходило со скоростью до 18 см в год. Из глубинных слоев литосферы в разломы проникала магма.

Некоторые исследователи считают, что выходящая на поверхность магма постепенно остывала и формировала новую структуру дна. Незадействованная земная кора под действие дрейфа плит погружалась в недра и снова превращалась в магму.

Исследования Вегенера затронули процессы вулканизма, изучение вопросов растяжения поверхности дна океанов, а также вязко-жидкой внутренней структуры земли. Труды А. Вегенера стали фундаментом для развития теории тектоники литосферных плит.

Исследования Шмеллинга доказали существование конвективного движения внутри мантии и приводящего к движению литосферных плит. Ученый считал, что основная причина движения тектонических плит – тепловая конвекция в мантии планеты, при которой нижние слои земной коры нагреваются и поднимаются, а верхние – остывают и постепенно опускаются.

Основное положение в теории тектоники плит занимает понятие геодинамической обстановки, характерной структуры с определенным соотношением тектонических плит. В одинаковой геодинамической обстановке наблюдаются однотипные магматические, тектонические, геохимические и сейсмические процессы.

Теория тектоники плит не объясняет полностью связи между движениями плит и происходящими в глубине планеты процессами. Необходима теория, которая могла бы описать внутреннее строение самой земли, процессы, происходящие в ее недрах.

Положения современной тектоники плит:

  • верхняя часть земной коры включает литосферу, обладающую хрупкой структурой и астеносферу, имеющую пластичную структуру;
  • основная причина движения плит – конвекция в астеносфере;
  • современная литосфера состоит из восьми крупных тектонических плит, порядка десяти средних плит и множества мелких;
  • мелкие тектонические плиты располагаются между крупными;
  • магматическая, тектоническая и сейсмическая активность сосредоточены на границах плит;
  • движение тектонических плит подчиняется теореме вращения Эйлера.

Типы движений тектонических плит

Выделяют различные типы движений тектонических плит:

  • дивергентное движение – две плиты расходятся, и между ними образуется подводная горная цепь или пропасть в земле;
  • конвергентное движение – две плиты сходятся, и более тонкая плита перемещается под более большую плиту, вследствие чего формируются горные хребты;
  • скользящее движение – плиты перемещаются в противоположных направлениях.

В зависимости от типа движения выделяют дивергентные, конвергентные и скользящие тектонические плиты.

Конвергенция приводит к субдукции (одна плита находится над другой) или к коллизии (две плиты сминаются и образуются горные цепи).

Дивергенция ведет к спредингу (расхождение плит и формированием океанических хребтов) и рифтингу (формирование разлома континентальной коры).

Трансформный тип движения тектонических плит подразумевает их перемещение вдоль разлома.

Рисунок 1. Типы движений тектонических плит. Автор24 - интернет-биржа студенческих работ

Что мы знаем о литосфере?

Тектонические плиты — это крупные стабильные участки коры Земли, которые являются составными частями литосферы. Если обратиться к тектонике, науке, изучающей литосферные платформы, то мы узнаем, что большие по площади участки земной коры со всех сторон ограничены специфическими зонами: вулканической, тектонической и сейсмической активностями. Именно на стыках соседствующих плит и происходят явления, которые, как правило, имеют катастрофические последствия. К ним можно причислить как извержения вулканов, так и сильные по шкале сейсмической активности землетрясения. В процессе изучения планеты тектоника платформ сыграла очень важную роль. Ее значение можно сравнить с открытием ДНК или гелиоцентрической концепцией в астрономии.

Если вспомнить геометрию, то мы можем представить, что одна точка может быть местом соприкосновения границ трех и более плит. Изучение тектонической структуры земной коры показывают, что наиболее опасными и быстро разрушающимися, являются стыки четырех и более платформ. Данное формирование наиболее неустойчивое.

Литосфера делится на два типа плит, разных по своим характеристикам: континентальную и океаническую. Стоит выделить тихоокеанскую платформу, сложенную из океанической коры. Большинство других состоят из так называемого блока, когда континентальная плита впаивается в океаническую.

Расположение платформ показывает, что около 90% поверхности нашей планеты состоит из 13 больших по размеру, стабильных участков земной коры. Остальные 10% припадают на небольшие формирования.

Ученые составили карту наиболее крупных тектонических плит:

  • Австралийская;
  • Аравийский субконтинент;
  • Антарктическая;
  • Африканская;
  • Индостанская;
  • Евразийская;
  • Плита Наска;
  • Плита Кокос;
  • Тихоокеанская;
  • Северо- и южно-американские платформы;
  • Плита Скотия;
  • Филипинская плита.

Из теории мы знаем, что твердая оболочка земли (литосфера) состоит не только из плит, формирующих рельеф поверхности планеты, но и из глубинной части — мантии. Континентальные платформы имеют толщину от 35 км (на равнинных территориях) до 70 км (в зоне горных массивов). Учеными доказано, что наибольшую толщину имеет плита в зоне Гималаев. Здесь толщина платформы достигает 90 км. Самая тонкая литосфера находится в зоне океанов. Ее толщина не превышает 10 км, а в некоторых районах этот показатель равняется 5 км. На основании информации о том, на какой глубине находится эпицентр землетрясения и какова скорость распространения сейсмических волн, производятся расчеты толщины участков земной коры.

Процесс формирования литосферных плит

Литосфера состоит преимущественно из кристаллических веществ, образовавшихся в результате охлаждения магмы при выходе на поверхность. Описание структуры платформ говорит об их неоднородности. Процесс формирования земной коры происходил длительный период, и длится до сих пор. Через микротрещины в породе расплавленная жидкая магма выходила на поверхность, создавая новые причудливые формы. Ее свойства менялись в зависимости от смены температуры, и образовывались новые вещества. По этой причине минералы, которые находятся на разной глубине, отличаются по своим характеристикам.

Поверхность земной коры зависит от влияния гидросферы и атмосферы. Постоянно происходит выветривание. Под действием данного процесса меняются формы, а минералы измельчаются, меняя свои характеристики при неизменном химическом составе. В результате выветривания поверхность становилась более рыхлой, появлялись трещины и микровпадины. В этих местах появлялись отложения, которые нам известны как грунт.

Карта тектонических плит

На первый взгляд кажется, что литосфера стабильна. Верхняя ее часть таковой и является, но вот нижняя, которая отличается вязкостью и текучестью, подвижна. Литосфера делится на определенное число частей, так называемых тектонических плит. Ученые не могут сказать из скольких частей состоит земная кора, поскольку помимо крупных платформ, имеются и более мелкие формирования. Названия самых больших плит были приведены выше. Процесс формирования земной коры происходит постоянно. Мы этого не замечаем, поскольку данные действия происходят очень медленно, но сопоставив результаты наблюдений за разные периоды, можно увидеть, на сколько сантиметров в год смещаются границы образований. По этой причине тектоническая карта мира постоянно обновляется.

Тектоническая плита Кокос

Платформа Кокос является типичным представителем океанических частей земной коры. Она расположена в Тихоокеанском регионе. На западе ее граница проходит по хребту Восточно-Тихоокеанского поднятия, а на востоке ее границу можно определить условной линией вдоль побережья Северной Америки от Калифорнии до Панамского перешейка. Данная плита пододвигается под соседнюю Карибскую плиту. Эта зона отличается высокой сейсмической активностью.

Сильнее всего от землетрясений в данном регионе страдает Мексика. Среди всех стран Америки именно на ее территории расположено больше всего потухших и действующих вулканов. Страна перенесла большое количество землетрясений с магнитудой выше 8 баллов. Регион достаточно густонаселенный, поэтому помимо разрушений, сейсмическая активность приводит и к большому числу жертв. В отличии от Кокоса, расположенные в другой части планеты, Австралийская и Западно-Сибирская платформы отличаются стабильностью.

Движение тектонических плит

Долгое время ученые пытались выяснить, почему в одном регионе планеты гористая местность, а в другом равнинная, и почему происходят землетрясения и извержения вулканов. Различные гипотезы строились преимущественно на тех знаниях, которые были доступны. Лишь после 50-х годов двадцатого столетия удалось более детально изучить земную кору. Изучались горы, образованные на местах разлома плит, химический состав этих плит, а также создавались карты регионов с тектонической активностью.

В изучении тектоники особое место заняла гипотеза о перемещениях литосферных плит. Еще в начале двадцатого века немецкий геофизик А. Вегенер выдвинул смелую теорию о том, почему они двигаются. Он тщательно исследовал схему очертаний западного побережья Африки и восточного побережья Южной Америки. Отправной точкой в его исследованиях стала именно схожесть очертаний данных континентов. Он предположил, что, возможно, эти материки были раньше единым целым, а затем произошел разлом и начался сдвиг частей коры Земли.

Его исследования затрагивали процессы вулканизма, растяжение поверхности дна океанов, вязко-жидкую структуру земного шара. Именно труды А. Вегенера были положены в основу исследований, проводимых в 60-х годах прошлого века. Они стали фундаментом для возникновения теории «тектоники литосферных плит».

Данная гипотеза описывала модель Земли следующим образом: тектонические платформы, имеющие жесткую структуру и обладающие разной массой, размещались на пластичном веществе астеносферы. Они находились в очень неустойчивом состоянии и постоянно перемещались. Для более простого понимания можно провести аналогию с айсбергами, которые постоянно дрейфуют в океанических водах. Так и тектонические структуры, находясь на пластичном веществе, постоянно перемещаются. Во время смещений плиты постоянно сталкивались, заходили одна на другую, возникали стыки и зоны раздвижения плит. Данный процесс происходил из-за разности в массе. В местах столкновений образовывались области с повышенной тектонической активностью, возникали горы, происходили землетрясения и извержения вулканов.

Скорость смещения составляла не более 18 см в год. Образовывались разломы, в которые поступала магма из глубинных слоев литосферы. По этой причине породы, составляющие океанические платформы, имеют разный возраст. Но ученые выдвинули даже более невероятную теорию. По мнению некоторых представителей научного мира, магма выходила на поверхность и постепенно охлаждалась, создавая новую структуру дна, при этом «избытки» земной коры под действием дрейфа плит, погружались в земные недра и снова превращались в жидкую магму. Как бы там ни было, а движения материков происходят и в наше время, и по этой причине создаются новые карты, для дальнейшего изучения процесса дрейфа тектонических структур.

  • 1)_Первая гипотеза возникла во второй половине 18 века и получила название гипотеза поднятий. Ее предложили М. В. Ломоносов, немецкие ученые А. фон Гумбольдт и Л. фон Бух, шотландец Дж. Хаттон. Суть гипотезы в следующем - поднятия гор вызваны подъемом из глубин Земли расплавленной магмы, которая на своем пути оказывала раздвигающее действие на окружающие слои, приводившее к образованию складок, пропастей разной величины. Ломоносов впервые выделил два типа тектонических движений - медленные и быстрые, вызывающие землетрясения.
  • 2) В середине 19 века на смену этой гипотезе пришла гипотеза контракции французского ученого Эли де Бомона. В ее основе была космогоническая гипотеза Канта и Лапласа о происхождении Земли как первоначально раскаленного тела с последующим постепенным охлаждением. Этот процесс приводил к уменьшению объема Земли, и в результате Земная кора сжималась, и возникали складчатые горные сооружения подобные гигантским «морщинам».
  • 3) В середине 19 века англичанин Д. Эйри и священник из Калькутты Д. Пратт открыли закономерность в положениях аномалий силы тяжести - высоко в горах аномалии оказывались отрицательными, т. е. обнаруживался дефицит массы, а в океанах аномалии были положительными. Чтобы объяснить это явление предложили гипотезу, согласно которой земная кора плавает на более тяжелом и вязком субстрате и находится в изостатическом равновесии, которое нарушается действием внешних радиальных сил.
  • 4) Космогоническую гипотезу Канта-Лапласа сменила гипотеза О. Ю. Шмидта о первоначальном твердом, холодном и однородном состоянии Земли. Возникла необходимость иного подхода в объяснении формирования земной коры. Такую гипотезу предложил В. В. Белоусов. Называется она радиомиграционная. Суть этой гипотезы:
  • 1. Основной энергетический фактор - радиоактивность. Разогрев Земли с последующим уплотнением вещества происходил благодаря теплу радиоактивного распада. Радиоактивные элементы на начальных этапах развития Земли распределялись равномерно, и поэтому разогрев был сильным и повсеместным.
  • 2. Нагревание первичного вещества и его уплотнение привело к разделению магмы или ее дифференциации на базальтовую и гранитную. В последней концентрировались радиоактивные элементы. Как более легкая, гранитная магма “всплывала” в верхнюю часть Земли, а базальтовая погружалась вниз. При этом происходила и температурная дифференциация.

Современные геотектонические гипотезы разрабатываются, используя идеи мобилизма. В основе этой идеи лежат представления о преобладании в тектонических движениях земной коры горизонтальных движений.

  • 5) Впервые для объяснения механизма и последовательности геотектонических процессов немецким ученым А. Вегенером была предложена гипотеза горизонтального дрейфа континентов.
  • 1. Сходство очертаний берегов Атлантического океана, особенно в южном полушарии (у Ю. Америки и Африки).
  • 2. Сходство геологического строения континентов (совпадение некоторых региональных тектонических простираний, сходство в составе и возрасте пород и др.).

гипотеза тектоники литосферных плит или новую глобальную тектонику. Главные положения этой гипотезы:

  • 1. Земная кора с верхней частью мантии образует литосферу, которая подстилается пластичной астеносферой. Литосфера разделена на крупные блоки (плиты). Границами плит являются рифтовые зоны, глубоководные желоба, к которым примыкают разломы, глубоко проникающие в мантию - это зоны Беньофа-Заварицкого, а также зоны современной сейсмической активности.
  • 2. Литосферные плиты горизонтально перемещаются. Это движение определяют два основных процесса - раздвигание плит или спрединг, погружение одной плиты под другую - субдукция или надвигание одной плиты на другую - обдукция.
  • 3. В зону раздвига периодически поступают из мантии базальты. Доказательством раздвига служат полосовые магнитные аномалии в базальтах.
  • 4. В районах островных дуг выделяются зоны скопления очагов глубокофокусных землетрясений, которые отражают зоны погружения плиты с базальтовой океанической корой под континентальную земную кору, т. е. эти зоны отражают зоны субдукции. В этих зонах, вследствие дробления и плавления, часть материала погружается, а другая в виде вулканов и интрузий проникает в континент и тем самым происходит наращивание мощности континентальной коры.

Тектоника литосферных плит (plate tectonics) - современная геологическая теория о движении литосферы. Согласно данной теории, в основе глобальных тектонических процессов лежит горизонтальное перемещение относительно целостных блоков литосферы - литосферных плит. Таким образом, тектоника плит рассматривает движения и взаимодействия литосферных плит. Впервые предположение о горизонтальном движении блоков коры было высказано Альфредом Вегенером в 1920-х годах в рамках гипотезы «дрейфа континентов», но поддержки эта гипотеза в то время не получила. Лишь в 1960-х годах исследования дна океанов дали неоспоримые доказательства горизонтальных движении плит и процессов расширения океанов за счёт формирования (спрединга) океанической коры. Возрождение идей о преобладающей роли горизонтальных движений произошло в рамках «мобилистического» направления, развитие которого и повлекло разработку современной теории тектоники плит. Основные положения тектоники плит сформулированы в 1967-68 группой американских геофизиков - У. Дж. Морганом, К. Ле Пишоном, Дж. Оливером, Дж. Айзексом, Л. Сайксом в развитие более ранних (1961-62) идей американских учёных Г. Хесса и Р. Дигца о расширении (спрединге) ложа океанов. 1). Верхняя каменная часть планеты разделена на две оболочки, существенно различающиеся по реологическим свойствам: жесткую и хрупкую литосферу и подстилающую её пластичную и подвижную астеносферу. 2). Литосфера разделена по плиты, постоянно движущиеся по поверхности пластичной астеносферы. Литосфера делится на 8 крупных плит, десятки средних плит и множество мелких. Между крупными и средними плитами располагаются пояса, сложенные мозаикой мелких коровых плит. 3). Различают три типа относительных перемещений плит: расхождение (дивергенция), схождение (конвергенция) и сдвиговые перемещения. 4). Объём поглощённой в зонах субдукции океанской коры равен объёму коры, возникающей в зонах спрединга. Это положении подчёркивает мнение о постоянстве объёма Земли. 5). Основной причиной движения плит служит мантийная конвекция, обусловленная мантийными теплогравитационными течениями.

Источником энергии для этих течений служит разность температуры центральных областей Земли и температуры близповерхностных её частей. При этом основная часть эндогенного тепла выделяется на границе ядра и мантии в ходе процесса глубинной дифференциации, определяющего распад первичного хондритового вещества, в ходе которого металлическая часть устремляется к центру, наращивая ядро планеты, а силикатная часть концентрируются в мантии, где далее подвергается дифференциации. 6). Перемещения плит подчиняются законам сферической геометрии и могут быть описаны на основе теоремы Эйлера. Теорема вращения Эйлера утверждает, что любое вращение трёхмерного пространства имеет ось. Таким образом, вращение может быть описана тремя параметрами: координаты оси вращения (например, её широта и долгота) и угол поворота.

Географические следствия движения Лит плит(Повышается сейсмическая активность, образуются разломы, появляются хребты, и так далее). В теории тектоники плит ключевое положение занимает понятие геодинамической обстановки -- характерной геологической структуры с определённым соотношением плит. В одной и той же геодинамической обстановке происходят однотипные тектонические, магматические, сейсмические и геохимические процессы.

Вместе с частью верхней мантии состоит из нескольких очень больших блоков, которые называются литосферными плитами. Их толщина различна - от 60 до 100 км. Большинство плит включают в себя как материковую, так и океаническую кору. Выделяют 13 основных плит, из них 7 наиболее крупных: Американская, Африканская, Индо- , Амурская.

Плиты лежат на пластичном слое верхней мантии (астеносфере) и медленно движутся друг относительно друга со скоростью 1-6 см в год. Этот факт был установлен в результате сопоставления снимков, сделанных с искусственных спутников Земли. Они позволяют предположить, что конфигурация в будущем может быть совершенно отличной от современной, так как известно, что Американская литосферная плита движется навстречу Тихоокеанской, а Евразийская сближается с Африканской, Индо-Австралийской, а также с Тихоокеанской. Американская и Африканская литосферные плиты медленно расходятся.

Силы, которые вызывают расхождение литосферных плит, возникают при перемещении вещества мантии. Мощные восходящие потоки этого вещества расталкивают плиты, разрывают земную кору, образуя в ней глубинные разломы. За счет подводных излияний лав по разломам формируются толщи . Застывая, они как бы залечивают раны - трещины. Однако растяжение вновь усиливается, и снова возникают разрывы. Так, постепенно наращиваясь, литосферные плиты расходятся в разные стороны.

Зоны разломов есть на суше, но больше всего их в океанических хребтах на , где земная кора тоньше. Наиболее крупный разлом на суше располагается на востоке . Он протянулся на 4000 км. Ширина этого разлома - 80-120 км. Его окраины усеяны потухшими и действующими .

Вдоль других границ плит наблюдается их столкновение. Оно происходит по-разному. Если плиты, одна из которых имеет океаническую кору, а другая материковую, сближаются, то литосферная плита, покрытая морем, погружается под материковую. При этом возникают , дуги () или горные хребты (). Если сталкиваются две плиты, имеющие материковую кору, то происходит смятие в складки горных пород края этих плит, и образование горных областей. Так возникли, например, на границе Евразийской и Индо-Австралийской плиты . Наличие горных областей во внутренних частях литосферной плиты говорит о том, что когда-то здесь проходила граница двух плит, прочно спаявшихся друг с другом и превратившихся в единую, более крупную литосферную плиту.Таким образом, можно сделать общий вывод: границы литосферных плит - подвижные области, к которым приурочены вулканы, зоны , горные области, срединно-океанические хребты, глубоководные впадины и желоба. Именно на границе литосферных плит образуются , происхождение которых связано с магматизмом.

Состоит из множества слоев, нагромождающихся друг на друга. Однако лучше всего нам известны земная кора и литосфера. Это не удивляет - ведь мы не только обитаем на них, но и черпаем из глубин большинство доступных нам природных ресурсов. Но еще верхние оболочки Земли сохраняют миллионы лет истории нашей планеты и всей Солнечной системы.

Эти два понятия так часто встречаются в прессе и литературе, что вошли повседневный словарь современного человека. Оба слова используются для обозначения поверхности Земли или другой планеты - однако между понятиями есть разница, базирующаяся на двух принципиальных подходах: химическом и механическом.

Химический аспект - земная кора

Если разделять Землю на слои, руководствуясь различиями в химическом составе, верхним слоем планеты будет земная кора. Это относительно тонкая оболочка, заканчивающаяся на глубине от 5 до 130 километров под уровнем моря - океаническая кора тоньше, а континентальная, в районах гор, толще всего. Хотя 75% массы коры приходится только на кремний и кислород (не чистые, связанные в составе разных веществ), она отличается наибольшим химическим разнообразием среди всех слоев Земли.

Играет роль и богатство минералов - различных веществ и смесей, созданных за миллиарды лет истории планеты. Земная кора содержит не только «родные» минералы, которые были созданы геологическими процессами, но и массивное органическое наследие, вроде нефти и угля, а также инопланетные, включения.

Физический аспект - литосфера

Опираясь на физические характеристики Земли, такие как твердость или упругость, мы получим несколько иную картину - внутренности планеты будет укутывать литосфера (от др. греческого lithos, «скалистый, твердый» и «sphaira» сфера). Она намного толще земной коры: литосфера простирается до 280 километров вглубь и даже захватывает верхнюю твердую часть мантии!

Характеристики этой оболочки полностью соответствуют названию - это единственный, кроме внутреннего ядра, твердый слой Земли. Прочность, правда, относительная - литосфера Земли является одной из самых подвижных в Солнечной системе, из-за чего планета уже не раз изменяла свой внешний вид. Но для значительного сжатия, искривления и прочих эластических изменений требуются тысячи лет, если не больше.

  • Интересный факт - планета может и не обладать поверхностной корой. Так, поверхность - это его затвердевшая мантия; кору ближайшая к Солнцу планета потеряла давным-давно в результате многочисленных столкновений.

Подводя итог, земная кора - это верхняя, химически разнообразная часть литосферы, твердой оболочки Земли. Первоначально они обладали практически одинаковым составом. Но когда на глубины воздействовала только нижележащая астеносфера и высокие температуры, в формировании минералов на поверхности активно участвовали гидросфера, атмосфера, метеоритные остатки и живые организмы.

Литосферные плиты

Еще одна черта, которая отличает Землю от других планет - это разнообразие на ней разнотипных ландшафтов. Конечно, свою невероятно большую роль сыграли и вода, о чем мы расскажем немного позже. Но даже основные формы планетарного ландшафта нашей планеты отличаются от той же Луны. Моря и горы нашего спутника - это котлованы от бомбардировки метеоритами. А на Земле они образовались в результате сотен и тысяч миллионов лет движения литосферных плит.

О плитах вы уже наверняка слышали - это громадные устойчивые фрагменты литосферы, которые дрейфуют по текучей астеносфере, словно битый лед по реке. Однако между литосферой и льдом есть два главных отличия:

  • Прорехи между плитами небольшие, и быстро затягиваются за счет извергающегося с них расплавленного вещества, а сами плиты не разрушаются от столкновений.
  • В отличие от воды, в мантии отсутствует постоянное течение, которое могло бы задавать постоянное направление движения материкам.

Так, движущей силой дрейфа литосферных плит является конвекция астеносферы, основной части мантии - более горячие потоки от земного ядра поднимаются к поверхности, когда холодные опускаются обратно вниз. Учитывая то, что материки различаются в размерах, и рельеф их нижней стороны зеркально отражает неровности верхней, движутся они также неравномерно и непостоянно.

Главные плиты

За миллиарды лет движения литосферных плит они неоднократно сливались в суперконтиненты, после чего снова разделялись. В ближайшем будущем, через 200– 300 миллионов лет, тоже ожидается образование суперконтинента под именем Пангея Ультима. Рекомендуем посмотреть видео в конце статьи - там наглядно показано, как мигрировали литосферные плиты за последние несколько сотен миллионов лет. Кроме того, силу и активность движения материков определяет внутренний нагрев Земли - чем он выше, тем сильнее расширяется планета, и тем быстрее и свободнее движутся литосферные плиты. Однако с начала истории Земли ее температура и радиус постепенно снижаются.

  • Интересный факт - дрейф плит и геологическая активность не обязательно должны питаться от внутреннего самонагрева планеты. К примеру, спутник Юпитера, обладает множеством активных вулканов. Но энергию для этого дает не ядро спутника, а гравитационное трение с , из-за которого недра Ио разогреваются.

Границы литосферных плит весьма условны - одни части литосферы тонут под другими, а некоторые, как Тихоокеанская плита, вообще скрыты под водой. Геологи сегодня насчитывают 8 основных плит, которые покрывают 90 процентов всей площади Земли:

  • Австралийская
  • Антарктическая
  • Африканская
  • Евразийская
  • Индостанская
  • Тихоокеанская
  • Северо-Американская
  • Южно-Американская

Такое разделение появилось недавно - так, Евразийская плита еще 350 миллионов лет назад состояла из отдельных частей, во время слияния которых образовались Уральские горы, одни из самых древних на Земле. Ученые по сей день продолжают исследование разломов и дна океанов, открывая новые плиты и уточняя границы старых.

Геологическая активность

Литосферные плиты движутся очень медленно - они наползают друг друга со скоростью 1–6 см/год, и отдаляются максимально на 10-18 см/год. Но именно взаимодействие между материками создает геологическую активность Земли, ощутимую на поверхности - извержения вулканов, землетрясения и образование гор всегда происходят в зонах контакта литосферных плит.

Однако есть исключения - так называемые горячие точки, которые могут существовать и в глубине литосферных плит. В них расплавленные потоки вещества астеносферы прорываются наверх, проплавляя литосферу, что приводит к повышенной вулканической активности и регулярным землетрясениям. Чаще всего это происходит неподалеку от тех мест, где одна литосферная плита наползает на другую - нижняя, вдавленная часть плиты погружается в мантию Земли, повышая тем самым давление магмы на верхнюю плиту. Однако сейчас ученые склоняются к той версии, что «утонувшие» части литосферы расплавляются, повышая давление в глубинах мантии и создавая тем самым восходящие потоки. Так можно объяснить аномальную отдаленность некоторых горячих точек от тектонических разломов.

  • Интересный факт - в горячих точках часто образуются щитовые вулканы, характерные своей пологой формой. Они извергаются много раз, разрастаясь за счет текучей лавы. Также это типичный формат инопланетных вулканов. Самый известный из них на Марсе, самая высокая точка планеты - высота его достигает 27 километров!

Океаническая и континентальная кора Земли

Взаимодействие плит также приводит к формированию двух различных типов земной коры - океанической и континентальной. Поскольку в океанах, как правило, находятся стыки различных литосферных плит, их кора постоянно изменяется - разламывается или поглощается другими плитами. На месте разломов возникает непосредственный контакт с мантией, откуда поднимается раскаленная магма. Остывая под воздействием воды, она создает тонкий слой из базальтов - основной вулканической породы. Таким образом, океаническая кора полностью обновляется раз в 100 миллионов лет - самые старые участки, которые находятся в Тихом океане, достигают максимального возраста в 156–160 млн лет.

Важно! Океаническая кора - это не вся та земная кора, что находится под водой, а лишь ее молодые участки на стыке материков. Часть континентальной коры находится под водой, в зоне стабильных литосферных плит.

Возраст океанической коры (красный соответствует молодой коре, синий - старой).