Что такое tft монитор. Какая матрица лучше: IPS или TN-TFT? Можно сделать общий вывод о том, что PLS лучше, чем IPS

Как обычно бывает с аббревиатурами, используемыми для обозначения специфики и теххарактеристик, в отношении TFT и IPS происходит путаница и подмена понятий. Во многом благодаря неквалифицированным описаниям электронных устройств в каталогах потребители ставят вопрос выбора изначально неверно. Так, матрица IPS — разновидность матриц TFT, так что сравнивать между собой эти две категории невозможно. Однако для российского потребителя аббревиатура TFT зачастую обозначает технологию TN-TFT, и в этом случае уже можно делать выбор. Так что, говоря об отличиях экранов TFT и IPS, мы будем иметь в виду TFT-экраны, изготовленные по технологиям TN и IPS.

TN-TFT — технология выполнения матрицы жидкокристаллического (на тонкопленочных транзисторах) экрана, когда кристаллы, при отсутствии напряжения, поворачиваются друг к другу под углом 90 градусов в горизонтальной плоскости между двумя пластинами. Кристаллы расположены по спирали, и в итоге при подаче максимального напряжения кристаллы поворачиваются таким образом, что при прохождении света через них образуются черные пиксели. Без напряжения — белые.

IPS — технология выполнения матрицы жидкокристаллического (на тонкопленочных транзисторах) экрана, когда кристаллы расположены параллельно друг другу вдоль единой плоскости экрана, а не спирально. При отсутствии напряжения молекулы жидких кристаллов не поворачиваются.

На практике самое важное отличие IPS-матрицы от TN-TFT-матрицы состоит в повышенном уровне контрастности за счет практически идеального отображения черного цвета. Картинка получается более четкой.

Качество цветопередачи матриц TN-TFT оставляет желать много лучшего. Каждый пиксель в этом случае может иметь собственный оттенок, отличный от других, в результате чего искажаются цвета. IPS уже обращается с изображением гораздо бережнее.

Слева — планшет с TN-TFT матрицей. Справа — планшет с IPS матрицей

Скорость отклика у TN-TFT несколько выше, чем у других матриц. IPS требуется время, чтобы повернуть весь массив параллельных кристаллов. Таким образом, при выполнении задач, где важна скорость прорисовки, гораздо выгоднее использовать матрицы TN. С другой стороны, в повседневном применении разницу во времени отклика человек не замечает.

Мониторы и дисплеи, созданные на базе IPS-матриц, гораздо более энергоемкие. Это обусловлено высоким уровнем напряжения, требуемого для поворота массива кристаллов. Потому задачам экономии энергии в мобильных и портативных устройствах отвечает больше технология TN-TFT.

Экраны, основанные на IPS, обладают широкими углами обзора, то есть не искажают и не инверсируют цвета, если взгляд падает под углом. В отличие от TN, углы обзора IPS составляют 178 градусов как по вертикали, так и по горизонтали.

Еще одно отличие, немаловажное для конечного потребителя — цена. TN-TFT на сегодняшний день представляет собой самый дешевый и самый массовый вариант матрицы, поэтому ее используют в бюджетных моделях электроники.

Выводы сайт

  1. Экраны IPS менее отзывчивы, время задержки отклика у них больше.
  2. Экраны IPS обеспечивают более качественную цветопередачу и контрастность.
  3. Углы обзора экранов IPS существенно больше.
  4. Экраны IPS требуют больше энергии.
  5. Экраны IPS дороже.

Современные устройства оснащаются экранами различной конфигурации. Основными на данный момент являются дисплеи на базе но для них могут использоваться разные технологии, в частности речь идет о TFT и IPS, которые различаются по целому ряду параметров, хоть и являются потомками одного изобретения.

Сейчас существует огромное количество терминов, которые обозначают определенные технологии, скрывающиеся под аббревиатурами. К примеру, многие могли слышать или читать об IPS или TFT, однако мало кто понимает, в чем на самом деле разница между ними. Связано это с недостатком информации в каталогах электроники. Именно поэтому стоит разобраться с этими понятиями, а также решить, TFT или IPS - что лучше?

Терминология

Для определения того, что будет лучше или хуже в каждом отдельном случае, требуется узнать, за какие функции и задачи отвечает каждый IPS по факту представляет собой TFT, точнее ее разновидность, при изготовлении которой использовалась определенная технология - TN-TFT. Следует рассмотреть более подробно эти технологии.

Различия

TFT (TN) представляет собой один из способов производства матриц то есть экранов на тонкопленочных транзисторах, в которых элементы располагаются по спирали между парой пластин. При отсутствии подачи напряжения они будут повернуты друг к другу под прямым углом в горизонтальной плоскости. Максимальное напряжение вынуждает кристаллы поворачиваться так, чтобы проходящий сквозь них свет приводил к образованию черных пикселей, а при отсутствии напряжения - белых.

Если рассматривать IPS или TFT, то отличие первой от второй состоит в том, что матрица изготовлена на базе, описанной ранее, однако кристаллы в ней расположены не спирально, а параллельно единой плоскости экрана и друг другу. В отличие от TFT, кристаллы в данном случае не поворачиваются в условиях отсутствия напряжения.

Как мы это видим?

Если смотреть на IPS или то визуально отличие между ними состоит в контрастности, которая обеспечивается почти идеальной передачей черного цвета. На первом экране изображение будет выглядеть более четким. А вот качество цветопередачи в случае использования матрицы TN-TFT нельзя назвать хорошим. В данном случае у каждого пикселя имеется собственный оттенок, отличный от других. Из-за этого цвета сильно искажаются. Однако есть у такой матрицы и достоинство: она характеризуется самой высокой скоростью отклика среди всех существующих на данный момент. Для экрана IPS требуется определенное время, за которое все параллельные кристаллы совершат полный разворот. Однако человеческий глаз практически не улавливает разницу во времени отклика.

Важные особенности

Если говорить о том, что лучше в эксплуатации: IPS или TFT, то стоит отметить, что первые являются более энергоемкими. Это связано с тем, что для поворота кристаллов требуется немалое количество энергии. Именно поэтому, если перед производителем стоит задача сделать свое устройство энергоэффективным, в нем обычно применяется TN-TFT матрица.

Если выбирать экран TFT или IPS, то стоит отметить более широкие углы обзора второго, а именно 178 градусов в обеих плоскостях, это очень удобно для пользователя. Другие оказались неспособными обеспечить подобное. И еще одним существенным различием между двумя этими технологиями является стоимость изделий на их основе. TFT-матрицы на данный момент представляют собой наиболее дешевое решение, которое используется в большинстве бюджетных моделей, а IPS относится к более высокому уровню, но и он не является топовым.

Дисплей IPS или TFT выбрать?

Первая технология позволяет получать максимально качественное, четкое изображение, но требует больше времени для поворота используемых кристаллов. Это влияет на время отклика и прочие параметры, в частности скорость разрядки аккумулятора. Уровень цветопередачи TN-матриц гораздо ниже, однако их время отклика минимально. Кристаллы тут расположены по спирали.

На самом деле можно легко отметить невероятную пропасть в качестве экранов, работающих на базе двух этих технологий. Касается это и стоимости. Технология TN остается на рынке исключительно из-за цены, однако она не способна обеспечить сочную и яркую картинку.

IPS - это весьма удачное продолжение в развитии TFT-дисплеев. Высокий уровень контрастности и довольно большие углы обзора - это дополнительные преимущества данной технологии. К примеру, у мониторов на базе TN иногда черный цвет сам изменяет свой оттенок. Однако высокое потребление энергии устройствами, работающими на базе IPS, вынуждает многих производителей прибегать к использованию альтернативных технологий либо понижать этот показатель. Чаще всего матрицы данного типа встречаются у проводных мониторов, которые не работают от аккумулятора, что позволяет не быть устройству настолько энергозависимым. Однако постоянно ведутся разработки в этой области.

Аббревиатуры обычно применяются для обозначения характеристик или специфики. В данном случае в отношении сравнения экранов IPS и TFT возникает ужасная путаница, потому что технология (матрица) IPS – это разновидность матриц TFT и только. Невозможно сравнивать между собой эти 2 технологии.

НО! Есть технология TN-TFT – вот между ней и IPS можно делать выбор и сравнивать. Поэтому, когда мы говорим о том, какой экран лучше: IPS или TFT, мы имеем в виду TFT-экраны в любом случае, но изготовленные на основе разных технологий: TN и IPS.

Кратко о TN-TFT и IPS

TN-TFT – это технология, на основе которой выполнена матрица жидкокристаллического экрана. Здесь кристаллы, когда на их ячейки не подается напряжение, «смотрят» друг на друга под углом 90 градусов. Они располагаются по спирали, и когда на них подается напряжение, то они поворачиваются таким образом, чтобы образовать нужный цвет.

IPS – эта технология отличается тем, что здесь кристаллы располагаются параллельно друг другу в единой плоскости экрана (в первом случае спирально). Все это сложно… на практике отличие между экранами на основе матриц TN и IPS заключается в том, что IPS идеально отображает черный цвет, в результате чего картинка получается более четкой и насыщенной.

Что касается TN-TFT, то качество цветопередачи данной матрицы не внушает доверия. Здесь каждый пиксель может иметь свой собственный оттенок, следовательно, цвета искажаются. IPS-матрицы показывают картинку гораздо лучше, а также более бережно обращаются с цветами. Также IPS позволяют наблюдать за происходящим на экране под большим углом. Если смотреть на экран TN-TFT под таким же углом, то цвета будут искажены настолько, что будет сложно разобрать картинку.

Преимущества TN

Однако матрицы TN-TFT обладают своими преимуществами. Главное из них – более низкая скорость отклика пикселей. IPS нужно больше времени, чтобы весь массив параллельных кристаллов повернуть в нужный угол. Поэтому если речь идет о выборе монитора для игр или для отображения динамических сцен, когда очень важна скорость прорисовки, то лучше всего выбирать именно экраны на основе технологии TN-TFT.

С другой стороны, при обычной работе с ПК разницу во времени отклика пикселей заметить невозможно. Она видна только при просмотре динамических сцен, что часто бывает в боевиках и видеоиграх.

Еще один плюс – низкое потребление электроэнергии. IPS-матрицы энергоемкие, т.к. для поворота массива кристаллов им необходимо большое напряжение. Следовательно, экраны на основе TFT лучше подходят для мобильных гаджетов, где остро стоит вопрос экономии энергии аккумулятора.

И еще – матрицы TN-TFT дешевые. Не найти сегодня монитора (не считая б/у или ЭЛТ модели), который бы был дешевле модели на основе технологии TN. Любое бюджетное устройство электроники с экраном обязательно будет использовать матрицу TN-TFT.

Итак, какой же экран лучше: TFT или IPS:

  1. IPS менее отзывчивы за счет большего времени отклика (плохо для игр и экшн-сцен);
  2. IPS гарантируют практически идеальную цветопередачу и контрастность;
  3. IPS обладает более широким углом обзора;
  4. IPS энергозатратны и потребляют больше электричества;
  5. Они также более дорогие, в то время как TN-TFT дешевые.

Вот, в принципе, и вся разница между данными матрицами. Если учитывать все преимуществ и недостатки, то, конечно же, легко прийти к конкретному выводу: IPS экраны гораздо лучше.


Пожалуйста, оцените статью:

Изображение формируется с помощью отдельных элементов, как правило, через систему развёртки. Простые приборы (электронные часы , телефоны, плееры , термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей . Многоцветное изображение формируется с помощью 2008) в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на канал), 24-битность эмулируется мерцанием с дизерингом .

Устройство ЖК-монитора

Субпиксел цветного ЖК-дисплея

Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами , и двух поляризационных фильтров , плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны , поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света - ячейку можно считать прозрачной. Если же к электродам приложено напряжение - молекулы стремятся выстроиться в направлении поля , что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение , можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени - жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток , или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отражённым от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют , кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Технические характеристики ЖК-монитора

Важнейшие характеристики ЖК-мониторов:

  • Разрешение : Горизонтальный и вертикальный размеры, выраженные в пикселах . В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией .

Фрагмент матрицы ЖК монитора (0,78х0,78 мм), увеличеный в 46 раз.

  • Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
  • Соотношение сторон экрана (формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.
  • Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
  • Контрастность : отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
  • Яркость : количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
  • Время отклика : минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
  • Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.
  • Тип матрицы: технология, по которой изготовлен ЖК-дисплей.
  • Входы: (напр, DVI , HDMI и пр.).

Технологии

Часы с ЖКИ-дисплеем

Жидкокристаллические мониторы были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff) компании RCA, Принстон, штат Нью-Джерси.

Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода . Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках.

Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.

TN+film (Twisted Nematic + film)

Часть «film» в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

TN + film - самая простая технология.

Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.

IPS (In-Plane Switching)

Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

На настоящий момент матрицы, изготовленные по технологии IPS единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB - 24 бита, по 8 бит на канал. TN-матрицы почти всегда имеют 6-бит, как и часть MVA.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а черным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика . Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT , контрастность все равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20", LG.Philips , NEC остаются единственными производителями панелей по данной технологии.

AS-IPS - технология Advanced Super IPS (Расширенная Супер-IPS), также была разработана корпорацией Hitachi в году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации LG.Philips.

A-TW-IPS - Advanced True White IPS (Расширенная IPS с настоящим белым), разработано LG.Philips для корпорации году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК , на матрицах производства Hitachi Displays.

*VA (Vertical Alignment)

MVA - Multi-domain Vertical Alignment. Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов до 176-178 градусов), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Достоинствами технологии MVA являются глубокий черный цвет и отсутствие, как винтовой структуры кристаллов, так и двойного магнитного поля.

Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения, большее время отклика.

Аналогами MVA являются технологии:

  • PVA (Patterned Vertical Alignment ) от Samsung.
  • Super PVA от Samsung.
  • Super MVA от CMO.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам.

Преимущества и недостатки

Искажение изображения на ЖК-мониторе при большом угле обзора

Макрофотография типичной жк-матрицы. В центре можно увидеть два дефектных субпикселя (зелёный и синий).

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малый размер и вес в сравнении с ЭЛТ . У ЖК-мониторов, в отличие от ЭЛТ , нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в 2-4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight - задний свет) ЖК-матрицы. Во многих современных (2007) мониторах для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более Герц . Светодиодная подсветка в основном используется в небольших дисплеях, хотя в последние годы она все шире применяется в ноутбуках и даже в настольных мониторах. Несмотря на технические трудности её реализации, она имеет и очевидные преимущества перед флуоресцентными лампами, например более широкий спектр излучения, а значит, и цветовой охват.

С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:

  • В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320x200) вообще не могут быть отображены на многих мониторах.
  • Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах).
  • Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
  • Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки).
  • Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев . Технология overdrive решает проблему скорости лишь частично.
  • Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
  • Массово производимые ЖК-мониторы более уязвимы, чем ЭЛТ. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей .
  • Вопреки расхожему мнению пикселы ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения.

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED -дисплеи. С другой стороны, эта технология встретила сложности в массовом производстве, особенно для матриц с большой диагональю.

См. также

  • Видимая область экрана
  • Антибликовое покрытие
  • en:Backlight

Ссылки

  • Информация о флюоресцентных лампах, используемых для подсветки ЖК-матрицы
  • Жидкокристаллические дисплеи (технологии TN + film, IPS, MVA, PVA)

Литература

  • Артамонов О. Параметры современных ЖК-мониторов
  • Мухин И. А. Как выбрать ЖК-монитор? . «Компьютер-бизнес-маркет», № 4 (292), январь 2005, стр. 284-291.
  • Мухин И. А. Развитие жидкокристаллических мониторов . «BROADCASTING Телевидение и радиовещение»: 1 часть - № 2(46) март 2005, с.55-56; 2 часть - № 4(48) июнь-июль 2005, с.71-73.
  • Мухин И. А. Современные плоскопанельные отображающие устройства ."BROADCASTING Телевидение и радиовещение": № 1(37), январь-февраль 2004, с.43-47.
  • Мухин И. А., Украинский О. В.

От качества матрицы монитора зависит не только яркость и красота изображаемой картинки, но и комфорт и безопасность для зрения пользователя. Все компании, выпускающие мониторы, идут в ногу со временем и с каждым годом совершенствуют технологию производства, стараются добиться идеальной цветопередачи и снизить нагрузку на глаза.

При выборе монитора покупатель в первую очередь обращает внимание на качество и тип дисплея, ведь именно от него зависит здоровье ваших глаз. Современная матрица экрана состоит из нескольких слоев:

  • активная матрица, благодаря которой формируется картинка;
  • слой жидких кристаллов;
  • слой подсветки, которая бывает светодиодной или люминесцентной.

На сегодняшний день большинство продаваемых мониторов имеют жидкокристаллический дисплей на тонкопленочных резисторах (TFT-LCD). Существует несколько технологий, по которым производятся современные дисплеи. Попробуем выяснить преимущества и недостатки двух популярных технологий TN+film и IPS .

Преимущества и недостатки TFT TN

Одной из первых технологий, на основании которой и сегодня производятся дисплеи, является TN+film (Twisted Nematic + Film). Это очень распространенный и недорогой вид матриц, который с каждым годом совершенствуется.

Главным преимуществом считается то, что выпуск TN мониторов доведен до совершенства и это позволяет существенно снизить его себестоимость. Малое время отклика матрицы позволяет без искажений просматривать динамические сцены на жидкокристаллических мониторах с технологией TN+film.

Однако у этих мониторов есть ряд отрицательных качеств, таких как:

  • низкая цветопередача ввиду малого количества данных на каждый канал (6 бит);
  • малая контрастность из-за особенности расположения жидких кристаллов в дисплее;
  • низкие показатели по углам обзора экрана;
  • высокая вероятность появления «битых пикселей».

Преимущества и недостатки TFT IPS

Более новой разработкой в области производства мониторов является технология IPS (in-plane switching). Данный вид дисплеев был изобретен, чтобы устранить недостатки предыдущих моделей.

Основными преимуществами данной технологии являются:

  • улучшенная цветопередача (8 бит на канал);
  • расширенные углы обзора, достигающие 178 градусов с любой точки;
  • почти эталонный черный цвет.

Но все же у мониторов с IPS матрицей есть и негативные стороны, такие как:

  • невысокие показатели яркости и контрастности, вследствие особенности размещения управляющих электродов;
  • плохие показатели времени отклика матрицы;
  • относительная дороговизна.

Каждая из описанных технологий имеет свои достоинства и негативные особенности. Но сейчас производство дисплеев находится на высоком уровне и отличия мониторов с разными технологиями становятся не столь критичными, что значительно облегчает выбор при покупке.