Критические состояния вещества. Смотреть что такое "критическое состояние" в других словарях

Уже давно возникла мысль, что, увеличивая давление и одновременно понижая температуру, можно довести обычные газы, так же как и ненасыщающие пары, до состояния насыщения и обратить их затем в жидкость. Таким способом, английский учёный Фарадей обратил в жидкость ряд газов: аммиак, углекислый газ, хлор и др. Но такие газы, как кислород, азот, водород, окись углерода, окись азота и метан, не обращались в жидкость даже при сжатии до 3000 ат и при охлаждении до –110° С. Нужно было выяснить причины этого явления.

Проблемой сжижения газов занимался и великий русский учёный Д. И. Менделеев. В то время как его предшественники в своих рассуждениях о сжижении газов исходили из подобия этого процесса процессу превращения ненасыщающего пара в жидкость, Менделеев обратил внимание на условия обратного процесса–перехода жидкости в пар.

Изучив эти условия, Менделеев пришёл к выводу о существовании для каждого вещества такой температуры, выше которой вещество находится в газообразном состоянии. Эту температуру Менделеев назвал температурой абсолютного кипения . Впоследствии она стала называться критической температурой .

Что это за температура? Чтобы ответить на этот вопрос, проделаем следующий опыт.

Поместим в воздушную ванну запаянную трубку, часть объёма которой занята жидкостью, остальная часть – насыщающим паром, и будем её нагревать. При нагревании плотность жидкости и плотность пара в трубке будут изменяться.

В качестве примера построим графики изменения плотности воды и водяного пара от температуры. Для этого по оси абсцисс будем откладывать температуру, а по оси ординат – плотности жидкости и пара.

Так как жидкость при нагревании расширяется, то кривая CD, показывающая плотность жидкости в зависимости от температуры, опускается, указывая на уменьшение плотности жидкости по мере повышения температуры.

А так как при повышении температуры жидкость испаряется, то плотность пара возрастает. Это возрастание плотности пара на графике изображено кривой линией АВ.

Кривая АВ расположена ниже кривой CD, так как при всякой температуре плотность пара в присутствии жидкости меньше плотности жидкости.

По мере повышения температуры плотность жидкости уменьшается, а плотность пара увеличивается. Кривая CD будет опускаться вниз, а кривая АВ подниматься вверх. Обе кривые сливаются в некоторой точке К, которая называется критической точкой , а температура, при которой происходит слияние кривых, называется критической температурой . Критической точке К соответствует особое состояние вещества, называемое критическим, при котором исчезает всякое различие между жидкостью и ее насыщающим паром.

Давление и удельный объём вещества (объём единицы массы) в критическом состоянии называются также критическими.

Первые систематические работы по определению критических температур различных веществ были проведены русскими учёными М. П. Авенариусом, А. И. Надеждиным и другими.

Критическое состояние эфира Авенариус изучал на специальном приборе. В трубочке, помещённой в воздушную ванну, эфир находится частью в жидком, частью в парообразном состоянии. При комнатной температуре оба эти состояния резко разграничены вогнутым мениском жидкости (эфир смачивает стекло). При нагревании трубочки вогнутая граница раздела постепенно выпрямляется и сразу, исчезает при критической температуре эфира, равной 194° С. Выше этой температуры эфир в трубочке находится в газообразном состоянии. Постепенно охлаждая после этого трубочку, можно наблюдать критическое состояние эфира (содержимое в трубочке потемнеет), а за ним и появление границы, разделяющей жидкость и пар.

В следующей таблице приведены критические температуры и критические давления некоторых химических веществ.

Важное значение уравнения Ван-дер-Ваальса заключается в том, что оно предсказывает особое состояние вещества - критическое. Если рассчитать изотермы Ван-дер-Ваальса для различных температур, то получим, что с повышением температуры кривые будут смещаться вверх, а длина S -образного участка будет уменьшаться и при некоторой температуре станет равной нулю, т.е. участок стянется в точку. Эта точка называется критической точкой, а параметры состояния p кр , V кр , T кр , соответствующие ей, называются критическими.

Рассмотрим семейство опытных изотерм на диаграмме p-V (рис. 11.3), для которых S -образный участок изотермы (11.4) представляет собой прямую линию. Изотерма, проходящая через критическую точку, называется критической. Концы прямолинейных участков семейства изотерм образуют колоколообразную кривую. Колоколообразная кривая и критическая изотерма делят диаграмму p-V на четыре области: жидкость, газ, пар и двухфазную область - жидкость и насыщенный пар (см.рис.11.3).

Если изотермически сжимать газ при температуре, меньшей T кр (изотерма для T = T 1 ), то газ перейдет в двухфазное состояние и затем в жидкое. Газообразное состояние при T < T кр часто называют паром. Легко видеть, что, если T > T кр , то, сжимая газ изотермически, его нельзя превратить в жидкость (изотерма для T = T 2 ). Это обстоятельство позволило понять, что любой газ можно превратить в жидкость, лишь охладив его до температуры ниже критической и сжимая его. Это предположение впервые высказал Д.И. Менделеев, и он же впервые ввел понятие критической температуры, проводя исследования коэффициента поверхностного натяжения. Учитывая вышесказанное, ученым удалось сжижить все известные газы.

При критическом состоянии различие в плотности жидкости и насыщенного пара пропадает. Критическое состояние представляет собой смесь частичек жидкости и пара, которые непрерывно распадаются, превращаясь друг в друга. Вещество при подходе к критической точке мутнеет, так как свет сильно рассеивается на этих неоднородностях среды.

Конец работы -

Эта тема принадлежит разделу:

Несколько вводных замечаний о предмете физики

Криволинейное движение ускорение при криволинейном движении тангенциальное и нормальное.. кинематика вращательного.. механика твердого тела поступательное движение твердого..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Несколько вводных замечаний о предмете физики
Мир, окружающий нас материален: он состоит из вечно существующей и непрерывно движущейся материи. Материей в широком смысле этого слова называется все, что реально существует в природе и м

Механика
Простейшим видом движения материи является механическое движение. ОПРЕДЕЛЕНИЕ: механическое движение – изменение взаимного расположения тел или их частей относительно друг друга в простран

Кинематика движения материальной точки. Характеристики движения
Положение материальной точки M в пространстве в данный момент времени может быть задано радиус-вектором (см. рис

Вектор скорости. Средняя и мгновенная скорость
Движения различных тел различаются тем, что тела за одинаковые промежутки (равные) времени проходят различные по

Путь при неравномерном движении
За малый промежуток времени Dt перемещение графически изображается в виде прямоугольника, высота которого равна

Ускорение при криволинейном движении (тангенциальное и нормальное ускорение)
Если траектория движения материальной точки представляет собой кривую линию, то такое движение мы будем называть криволинейным. При таком движении

Угловая скорость
ОПРЕДЕЛЕНИЕ: Вращательным движением будем называть такое движение, при котором все точки абсолютно твердого тела описывают окружности, центры которых лежат на одной прямой, называемой осью в

Угловое ускорение
Вектор угловой скорости может изменяться как за счет изменения скорости вращения тела вокруг оси (в этом случае

Связь между линейной и угловой скоростью
Пусть за малый промежуток времени Dt тело повернулось на угол Dj (рис. 2.17). Точка, находящаяся на расстоянии R от оси, проходит при этом путь DS = R×Dj. По определению

Динамика
Раздел механики, исследующий законы и причины, вызывающие движение тел, т.е. изучает движение материальных тел под действием приложенных к ним сил. В основе классической (ньютоновской) мех

закон Ньютона
ОПРЕДЕЛЕНИЕ: Ускорение всякого тела прямо пропорционально действующей на него силе и обратно пропорционально массе тела:

закон Ньютона
Всякое действие тел друг на друга носит характер взаимодействия: если тело M1 действует на тело M2 с некоторой силой f12, то и тело M2 в свою очер

Импульс. Закон сохранения импульса
В механической системе, состоящей из нескольких тел, существуют как силы взаимодействия между телами системы, которые называются внутренними, так и силы взаимодействия этих тел с телами, не входящи

Работа и энергия
Пусть тело, на которое действует сила, проходит, двигаясь по некоторой траектории путь S. При этом сила либо из

Мощность
На практике имеет значение не только величина совершенной работы, но и время, в течение которого она совершается. Из всех механизмов наиболее выгодными являются те, которые за меньшее время выполня

Энергия
Из опыта известно, что тела часто оказываются в состоянии совершать работу над другими телами. ОПРЕДЕЛЕНИЕ: Физическая величина, характеризующая способность тела или системы тел совершать

Кинетическая энергия тела
Рассмотрим простейшую систему, состоящую из одной частицы (материальной точки). Напишем уравнение движения частицы

Потенциальное поле сил. Силы консервативные и неконсервативные
Если частица (тело) в каждой точке пространства подвержена воздействию других тел, то говорят, что эта частица (тело) находится в поле сил. Пример: 1. Частица вблизи повер

Потенциальная энергия тела в поле сил тяжести (в поле тяготения Земли)
Поле тяготения Земли есть силовое поле, поэтому любое движение тела в силовом поле сопровождается совершением работы силами этого поля. Для определения потенциальной энергии тела, находяще

Потенциальная энергия в гравитационном поле (в поле всемирного тяготения)
Установленный Ньютоном закон всемирного тяготения гласит: ОПРЕДЕЛЕНИЕ: Гравитационная сила или сила тяготения – это сила, с которой две материальные точки притягивают друг др

Потенциальная энергия упруго деформированного тела
Потенциальной энергией может обладать не только система взаимодействующих тел, но и отдельно взятое упруго деформированное тело (например, сжатая пружина, растянутый стержень и т.п.). В этом случае

Закон сохранения энергии
Без нарушения общности рассмотрим систему, состоящую из двух частиц массами m1 и m2. Пусть частицы взаимодействуют друг с другом с силами

Поступательное движение твердого тела
ОПРЕДЕЛЕНИЕ: Абсолютно твердым телом будем называть такое тело, деформациями которого в условиях рассматриваемой задачи можно пренебречь. или Абсолютно твердым телом

Вращательное движение твердого тела
ОПРЕДЕЛЕНИЕ: Вращательным движением твердого тела будем называть такое движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и ой же прямой, называемой

Момент импульса тела
Для описания вращательного движения потребуется ещё одна величина, называемая моментом импульса. Снача

Закон сохранения момента импульса
ФОРМУЛИРОВКА: Момент импульса замкнутой системы материальных точек остается постоянным. Отметим, что момент импульса остается постоянным и для системы, подвергающейся внешним воздействиям,

Основное уравнение динамики вращательного движения
Рассмотрим систему материальных точек, каждая из которых может перемещаться, оставаясь в одной из плоскостей, проходящих через ось Z (рис. 4.15). Все плоскости могут вращаться вокруг оси Z с углово

Кинетическая энергия вращающегося твердого тела
1. Рассмотрим вращение тела вокруг неподвижной оси Z. Разобьем все тело на множество элементарных масс m

Работа внешних сил при вращательном движении твердого тела
Найдем работу, которую совершают силы при вращении тела вокруг неподвижной оси Z. Пусть на массу действ

Линии и трубки тока
Гидродинамика изучает движение жидкостей, однако ее законы примени- мы и к движению газов. При стационарном течении жидкости скорость ее частиц в каждой точке пространства есть величина, независима

Уравнение Бернулли
Будем рассматривать идеальную несжимаемую жидкость, в которой внутреннее трение (вязкость) отсутствует. Выделим

Силы внутреннего трения
Реальной жидкости присуща вязкость, которая проявляется в том, что любое движение жидкости и газа самопроизвольн

Ламинарное и турбулентное течения
При достаточно малой скорости движения жидкости наблюдается слоистое или ламинарное течение, когда слои жидкости скользят относительно друг друга не перемешиваясь. При ламинарном т

Течение жидкости в круглой трубе
При движении жидкости в круглой трубе ее скорость равна нулю у стенок трубы и максимальна на оси трубы. Полагая

Движение тел в жидкостях и газах
При движении симметричных тел в жидкостях и газах возникает сила лобового сопротивления, направленная противоположно скорости движения тела. При ламинарном обтекании шара линии ток

Законы Кеплера
К началу 17 столетия большинство ученых окончательно убедилось в справедливости гелиоцентрической системы мира. Однако ученым того времени не были ясны ни законы движения планет, ни причины, опреде

Опыт Кавендиша
Первой успешной попыткой определения «g» были измерения, осуществленные Кавендишем (1798г.), который применил дл

Напряженность гравитационного поля. Потенциал гравитационного поля
Гравитационное взаимодействие осуществляется через гравитационное поле. Это поле проявляет себя в том, помещенное в него другое тело оказывается под действием силы. Об «интенсивности» гравитационно

Принцип относительности
В разд. 2.1. для механических систем был сформулирован следующий принцип относительности: во всех инерциальных системах отсчета все законы механики одинаковы. Никакими (меха

Постулаты специальной (частной) теории относительности. Преобразования Лоренца
Эйнштейн сформулировал два постулата, лежащие в основе специальной теории относительности: 1. Физические явления во всех инерциальных системах отсчета протекают одинаково. Никакими

Следствия из преобразований Лоренца
Самым неожиданным следствием теории относительности является зависимость времени от системы отсчета. Длительность событий в разных системах отсчета. Пусть в некоторой точк

Интервал между событиями
В теории относительности вводят понятие события, которое определяется местом, где оно произошло, и временем, когда оно произошло. Событие можно изобразить точкой в воображаемом четырехмерном

Уравнение гармонического колебательного движения
Пусть на некоторое тело массы “m” действует квазиупругая сила, под действием которой тело приобретает ускорени

Графическое изображение гармонических колебаний. Векторная диаграмма
Сложение нескольких колебаний одинакового направления (или, что то же самое, сложение нескольких гармонических функций) значительно облегчается и становится наглядным, если изображать колебания гра

Скорость, ускорение и энергия колеблющегося тела
Вернемся к формулам для смещения x, скорости v и ускорения a гармонического колебательного процесса. Пусть имеем тело массы «m», которое совершает под действием квазиу

Гармонический осциллятор
Систему, описываемую уравнением, где

Физический маятник
ОПРЕДЕЛЕНИЕ: Физическим маятником будем называть твердое тело, способное совершать колебания вокруг непо

Затухающие колебания
При выводе уравнения гармонических колебаний считалось, что колеблющаяся точка находится под действием только квазиупругой силы. Во всякой реальной колебательной системе всегда имеются силы сопроти

Вынужденные колебания. Резонанс
Для того чтобы система совершала незатухающие колебания, необходимо извне восполнять потери энергии колебаний на трение. Для того, чтобы энергия колебаний системы не убывала обычно вводят силу, пер

Предмет и методы молекулярной физики
Молекулярная физика представляет собой раздел физики, изучающий строение и свойства вещества, исходя и так называемых молекулярно-кинетических представлений. Согласно этим представлениям любое тело

Термодинамическая система. Параметры состояния системы. Равновесное и неравновесное состояние
ОПРЕДЕЛЕНИЕ: Термодинамической системой называется совокупность тел, обменивающихся энергией, как друг с другом, так и с окружающими телами. Примером системы может служить жидкость

Идеальный газ. Параметры состояния идеального газа
ОПРЕДЕЛЕНИЕ: Идеальным газом называется газ, при рассмотрении свойств которого соблюдаются следующие условия: а) соударения молекул такого газа происходят как соударения упругих шаров, размеры

Газовые законы
Если разрешить уравнение состояния идеального газа относительно какого-либо из параметров, н

Уравнение состояния идеального газа (уравнение Менделеева - Клапейрона)
До этого рассматривались газовые процессы, при которых один из параметров состояния газа оставался неизменным,

Физический смысл универсальной газовой постоянной
Универсальная газовая постоянная имеет размерность работы, отнесенной к 1 молю и температуре 1°К.

Основное уравнение кинетической теории газов
Если в предыдущем разделе применялся термодинамический метод исследования, то в этом разделе будет использован статистический метод исследования молекулярных процессов. На основании исследования со

Барометрическая формула. Распределение Больцмана
Давно известно, что давление газа над поверхностью Земли уменьшается с высотой. Атмосферное давление на некотор

Максвелловское распределение молекул по скоростям
В результате столкновений молекулы обмениваются скоростями, а в случае тройных и более сложных столкновений молекула может иметь временно очень большие и очень малые скорости. Хаотичное движение пр

Явления переноса. Длина свободного пробега молекул
В предыдущих разделах мы рассматривали свойства тел, находящихся в тепловом равновесии. Данный раздел посвящен процессам, с помощью которых происходит установление состояния равновесия. Такие проце

Явление диффузии
Диффузией называют процесс взаимного проникновения молекул соприкасающихся веществ, обусловленный тепловым движением. Этот процесс наблюдается в газах, жидкостях и твердых т

Явление теплопроводности и вязкости
Явление теплопроводности вещества определяет многие очень важные технические процессы и широко применяется в разнообразных расчетах. Эмпирическое уравнение теплопроводности было получено французски

Термодинамика
Термодинамика изучает физические явления с точки зрения тех превращений энергии, которыми эти явления сопровождаются. Первоначально термодинамика возникла как наука о взаимном превращении теплоты в

Внутренняя энергия идеального газа
Важной величиной в термодинамике является внутренняя энергия тела. Любое тело кроме механической энергии может обладать запасом внутренней энергии, которая связана с механическим движением атомов и

Работа и теплота. Первое начало термодинамики
Внутренняя энергия газа (и другой термодинамической системы) может изменяться в основном за счет двух процессов: совершения над газом работы

Работа газовых изопроцессов
Пусть газ заключен в цилиндрический сосуд, закрытый плотно пригнанным и легко скользящим поршнем (рис.10.3). Пр

Молекулярно-кинетическая теория теплоемкостей
Теплоемкостью тела C называют физическую величину, численно равную количеству тепла, которое необходимо сообщить телу для нагревания его на один градус. Если сообщить телу к

Адиабатический процесс
Наряду с изопроцессами существует адиабатический процесс, широко распространенный в природе. Адиабатическим процессом называют процесс, протекающий без теплообмена с внеш

Круговые обратимые процессы. Цикл Карно
Механические процессы обладают замечательным свойством обратимости. Например, брошенный камень, описав некоторую траекторию, упал на землю. Если его бросить обратно с той же скоростью, то он опишет

Понятие об энтропии. Энтропия идеального газа
Для цикла Карно из формул (10.17) и (10.21) легко получить соотношение Q1 /T1 - Q2 /T2 = 0. (10.22) Величину Q/T называют привед

Второе начало термодинамики
Понятие энтропии помогло строго математически сформулировать закономерности, позволяющие определить направление тепловых процессов. Огромная совокупность опытных фактов показывает, что для

Статистическое толкование второго начала термодинамики
Состояние макроскопического тела (т.е. тела, образованного огромным числом молекул) может быть задано с помощью объема, давления и температуры. Данное макроскопическое состояние газа с определенным

Уравнение Ван-дер-Ваальса
Поведение реальных газов при их малых плотностях хорошо описывается уравнением Клапейрона:

Эффект Джоуля-Томсона
В реальном газе между молекулами действуют силы притяжения и отталкивания. Силы притяжения обусловлены дипольным взаимодействием молекул. Некоторые молекулы могут представлять собой постоянные дипо

Критическая температура

Critical temperature

Температура, выше которой, газ не может быть превращен в жидкость ни при каком давлении. Выше критической температуры вещество не может находиться в двухфазном состоянии и процессы конденсации и испарения становятся невозможными. Давление, соответствующее критической точке, называется критическим давлением, а объем – критическим объемом.

Применительно к нефтяным газам, состоящим из смеси углеводородов с различными критическими температурами и давлениями, пользуются псевдокритическими давлением и температурой, представляющими собой суммы произведений относительного содержания данного углеводорода в смеси (в долях единицы, если задано объемное содержание, или в молях) и значений критических давлений и температур этих же углеводородов.

Отношение давления (температуры), под которым находится смесь газов, к псевдо-критическому давлению (температуре) называется приведенным псевдокритическим давлением (температурой), зная которые можно найти значения коэффициентов сверхсжимаемости реальных газов.


Краткий электронный справочник по основным нефтегазовым терминам с системой перекрестных ссылок. - М.: Российский государственный университет нефти и газа им. И. М. Губкина . М.А. Мохов, Л.В. Игревский, Е.С. Новик . 2004 .

Смотреть что такое "Критическая температура" в других словарях:

    Критическая температура - это предельно допустимая температура электроизоляционных материалов, использованных для изготовления элементов светильников, выше которой происходит их оплавление, воспламенение и т.д. Источник: НПБ 249 97: Светильники. Требования пожарной… … Словарь-справочник терминов нормативно-технической документации

    Критическая температура - фазового перехода такая температура, при которой плотность и давление насыщенного пара становится максимальными, а плотность жидкости, находящейся в динамическом равновесии с паром, становится минимальной. Критическая температура смешения… … Википедия

    КРИТИЧЕСКАЯ ТЕМПЕРАТУРА - 1) теып ра в ва в его критическом состоянии. Для индивидуальных в в К. т. определяется как темп pa, при к рой исчезают различия в физ. св вах между жидкостью и паром, находящимися в равновесии. При К. т. плотности насыщенного пара и жидкости… … Физическая энциклопедия

    КРИТИЧЕСКАЯ ТЕМПЕРАТУРА - 1) предельная Температура равновесного сосуществования двух фаз (жидкости и ее пара), выше которой эти фазы неразличимы (см. Критическое состояние).2) Температура, при которой в жидких смесях с ограниченно растворимыми компонентами наступает их… … Большой Энциклопедический словарь

    КРИТИЧЕСКАЯ ТЕМПЕРАТУРА - а) температура вещества в его (см.), определяется как температура равновесного сосуществования двух фаз (жидкости и её пара), выше которой может существовать лишь одна фаза. Сжижение газов возможно только при охлаждении их ниже критической точки; … Большая политехническая энциклопедия

    критическая температура - Температура, при которой происходит разрушение сгораемых материалов (плавление, обугливание, выделение дыма, тление и т.д.) [ГОСТ 17677 82] Тематики лампы, светильники, приборы и комплексы световые … Справочник технического переводчика - Critical temperature Критическая температура. Температура, выше которой паровая фаза не может быть сконденсирована в жидкость при увеличении давления. (

Как было отмечено выше, в критическом состоянии нет различия между жидкостью и газом, нет границы раздела между этими фазами. На диаграмме Ван-дер-Ваальса критическое состояние вещества изображается точкой перегиба К. Критическое состояние можно описать при помощи критических параметров состояния : критической температуры Т к, критического объёма V к и критического давления Р к. Критические параметры можно выразить через поправки на давление и объём. Поскольку критическая точка – точка перегиба изотермы Ван-дер-Ваальса, то в этой точке первая и вторая производные от давления по объёму должны быть равны нулю. Поскольку состояние реального газа описывается уравнением Ван-дер-Ваальса, то первая производная определяется формулой:

Вторая производная: .

Приведём к общему знаменателю обе формулы и их числители приравняем нулю, получим: .

Преобразуем эту систему к уравнению: . Поделим обе части этого уравнения на и получим:

На практике обычно . Для выражения критической температуры через поправки на объём и давление, воспользуемся формулой (6.5)и получим . Подставим в эту формулу вместо критического объёма правую часть равенства (6.6) и получим:

Следует обратить внимание на то, что критическая температура вещества не равна температуре кипения. Так температура кипения воды 373,15 К, а критическая температура 647,25 К. Ниже приведены критические температуры некоторых веществ.

Первые наблюдения над изменениями характеристик веществ, происходящими в критическом (жидкость-пар) состоянии, были проведены при нагревании жидкостей в запаянных стеклянных трубках. Метод экспериментального определения критических температур по исчезновению мениска в ампуле в настоящее время реализован А.Г. Назмутдиновым на кафедре ТО и НХС СамГТУ.

В общем случае критическое состояние может характеризовать не только равновесие “жидкость-пар”, а и состояние, например, двухфазной системы, в котором сосуществующие в равновесии несмешивающиеся жидкости становятся тождественными по всем своим свойствам. Для решения задач, рассматриваемых в данном пособии, важно парожидкостное равновесие.

Параметры системы, представленной индивидуальным веществом и находящейся в критическом состоянии (давление, температура, объем), называются критическими свойствами этого вещества. При температурах выше сосуществование рассматриваемых фаз в равновесии невозможно, система превращается в гомогенную. В этом смысле критическое состояние является предельным случаем двухфазного равновесия.

В критическом состоянии поверхностное (межфазное) натяжение на границе раздела сосуществующих фаз равно нулю, поэтому вблизи критического состояния легко образуются системы, состоящие из множества капель или пузырьков (эмульсии, аэрозоли, пены). Вблизи критического состояния резко возрастает величина флуктуаций плотности (в случае чистых веществ) и концентраций компонентов (в многокомпонентных системах), что приводит к значительному изменению ряда физических свойств вещества. Наличие флуктуаций плотности приводит к оптической неоднородности системы, к рассеянию света. Это явление носит название критической опалесценции. Рассеяние света служит источником сведений о величине и характере флуктуаций в критической области.

При приближении к критическому состоянию свойства сосуществующих фаз (плотность, теплоемкость и др.) изменяются резко, но без скачка. Поэтому критическое состояние наблюдается лишь при равновесии изотропных (isos - греч., равный; tropos- греч., свойство), т.е. равных во всех направлениях фаз (жидких или газовых) или кристаллических фаз с одинаковым типом решетки. Независимо от природы сосуществующих фаз (типа двухфазного равновесия) и числа компонентов в критическом состоянии система имеет вариантность на 2 меньше, чем в обычном гомогенном состоянии, т.е. число степеней свободы равно нулю.

В чистых веществах (однокомпонентных системах) критическое состояние всегда имеет место для равновесия “жидкость-пар”, если вещество при критических параметрах стабильно. На диаграмме состояния критическому состоянию отвечает конечная точка кривой равновесия, называемая критической точкой. Изотермы на диаграммах P-V (рис. 4.2, 4.3) при температурах ниже представляют собой ломаные линии. При критической температуре изотерма является плавной кривой, имеющей точку перегиба с горизонтальной касательной. Выше ни при каких давлениях невозможно сосуществование жидкости в равновесии с паром.

Критическая температура чистого (индивидуального) вещества может быть определена как максимальная температура, при которой жидкая и паровая фазы еще могут сосуществовать в равновесии. Давление паров при этой температуре называется критическим давлением, а объем, отнесенный к одному молю или другой единице массы вещества, - критическим молярным или удельным объемом соответственно.

Упрощенное представление о критической точке может быть получено на основе рассмотрения кинетической обстановки в жидкой фазе. Потенциальная энергия взаимного притяжения молекул, обусловливающая существование жидкой фазы, уравновешивается в какой-то степени кинетической энергией молекул. Последняя стремится хаотически рассеять все частицы жидкости. Таким образом, давление паров есть результат того, что некоторые из молекул жидкости имеют достаточно высокую кинетическую энергию, чтобы вырваться из поля действия сил сцепления жидкости. С увеличением температуры жидкости кинетическая энергия молекул возрастает, силы же сцепления меняются незначительно. Температура, при которой средняя молекулярная кинетическая энергия становится равной потенциальной энергии притяжения, называется критической, так как при более высоком значении температуры существование жидкой фазы становится невозможным.

Математическим критерием критического состояния являются равенства

из которых следует, что критическая температура () - это точка перегиба изотермы на плоскости P-V при критических давлении и объеме. Согласно этим уравнениям, в критическом состоянии давление в системе не изменяется при изотермическом изменении объема. Слабая зависимость давления от объема может сохраняться в значительном интервале температур вдали от критической точки. Иногда критическое состояние наблюдается в равновесии двух кристаллических модификаций, параметры которых сближаются с ростом давления и температуры и становятся идентичными в критической точке.

В двойных системах, как и в чистых веществах, равновесное сосуществование жидкой и паровой фаз всегда заканчивается критическим состоянием. Для некоторых систем с ограниченной взаимной растворимостью компонентов существуют, кроме того, критические состояния как предельные случаи равновесного сосуществования двух жидких или двух кристаллических фаз (твердых растворов). В некоторых случаях возможное в принципе критическое состояние может не реализоваться, если на рассматриваемое двухфазное равновесие накладывается равновесие других фаз. Например, при понижении температуры или повышении давления начинается кристаллизация одной или обеих жидких фаз.

Равновесие “жидкость-газ” для смесей на плоской диаграмме состояния в координатах “давление-состав” изображается изотермами, которые состоят из кривых конденсации и кривых кипения. Эти кривые замыкаются в критических точках, геометрическое место которых является проекцией пространственной критической кривой в данной системе координат. Критическая кривая заканчивается в критических точках чистых компонентов. По мере повышения температуры область двухфазного состояния системы уменьшается, стягиваясь при в точку, совпадающую с критической точкой более летучего компонента.

Равновесие “жидкость-жидкость” может заканчиваться верхней критической точкой смешения (растворимости) или нижней критической точкой смешения (растворимости), в зависимости от того, увеличивается или уменьшается взаимная растворимость компонентов с повышением температуры. В общем случае система может иметь обе критические точки; пограничная кривая, отделяющая область гомогенного состояния системы при любых составах от области ее расслаивания на две жидкие фазы, имеет вид замкнутого овала.

В двойных системах с ограниченной взаимной растворимостью газов наблюдается критическое состояние для равновесия “газ-газ”. Экспериментально обнаружены только нижние критические точки смешения газов, хотя в принципе возможно существование и верхних критических точек. Критическое состояние газов бывает двух типов. Первый обнаружен в смесях, одним из компонентов которых является гелий. Расслаивание газовой смеси начинается в критической точке менее летучего компонента. По мере повышения температуры интервал составов, соответствующих двухфазному состоянию газовой смеси, сужается, а давление повышается. Вся критическая кривая расположена при более высоких давлениях и температурах, чем кривые равновесия “жидкость-пар”. В случае критического состояния второго типа расслаивание газовой смеси начинается при температуре, для которой еще наблюдается равновесие “жидкость-пар”, т.е. при температуре ниже критической точки менее летучего компонента. Изотерма равновесия “жидкость-газ” соприкасается с изотермой равновесия “газ-газ” в точке, которая является двойной критической точкой.

Критические кривые могут иметь особые точки, в которых термодинамическое поведение системы отличается от поведения в остальных точках критической кривой. Особыми точками являются, например, критические точки равновесия “жидкость-пар” в случае бесконечно разбавленных растворов. Их особенность состоит в том, что в пределах x i - >0 значения некоторых свойств системы зависят от пути подхода к этому пределу. Например, парциальный молярный объем растворителя равен молярному объему чистого растворителя только в том случае, если переход x i - >0 происходит при давлениях и температурах, которые являются критическими параметрами для чистого растворителя. Вдали от критической точки парциальный молярный объем растворителя в бесконечно разбавленном растворе при любых температурах и давлениях не равен молярному объему чистого растворителя. Критическая точка азеотропной смеси и точки минимума и максимума на критической кривой также считаются особыми.

В многокомпонентных системах возможны двухфазные равновесия различных типов, оканчивающиеся критическим состоянием. В тройных системах критические точки образуют критическую поверхность с несколькими особыми точками. Наиболее важно появление критических точек высшего порядка, в которых сливаются критические кривые равновесий “жидкость-пар” (в присутствии второй жидкой фазы) и “жидкость-жидкость” (в присутствии газовой фазы).

Основные положения классической теории критического состояния были сформулированы Дж. Гиббсом и Л.Д. Ландау. Современная теория позволяет предсказать поведение вещества в критическом состоянии по известным свойствам двухфазного состояния. Изучение критического состояния имеет важное практическое значение. Многие технологические процессы протекают в области, близкой к критическому состоянию, или в закритической области параметров. Очевидно, что для проектирования и эксплуатации подобных производств необходимо четко представлять особенности критического состояния.

Установление понятия о критическом состоянии сыграло большую роль в технике сжижения газов. Стали тривиальными примеры, относящиеся к истории получения в жидком состоянии таких газов, как водород (t c = -239,9 0 С), гелий (-267,9 0 С), неон (-228,7 0 С) и др.