Джеймс Кларк Максвелл: ученый и его демон. Максвелл Джеймс - биография, факты из жизни, фотографии, справочная информация

Джеймс Клерк Максвелл (James Clerk Maxwell, 1831–1879) - выдающийся деятель шотландского Просвещения, многое сделавший для актуализации наследия кельтов, которые взаимодействовали с пространством с позиции цвета и света. Максвелл внес неоценимый вклад в понимание античных культур. Кроме того, его труды по электродинамике являются основой учения о развитии и управлении сознанием человека посредством электромагнитных волн.

Максвелл создал важнейшую систему теории света, которая опередила на тот момент и даже сегодня опережает возможности человека переживать цвет. Он научно доказал важность понимания именно восьми частотных характеристик цвета, которые определяют возможности нашего сознания. Особенно важно отметить его изучение восьмого цвета - белого, который он показал как фигуру, состоящую из частотных характеристик красного, зеленого и фиолетовых цветов. Это значит, что три цвета, определяющие самый низкий, самый высокий и средний частотные показатели, образуют белый цвет.

По сути, он создал великую теорию Геометрии цвета, которая так и не стала востребована обществом для развития человека, а ушла в научную плоскость - работу с различными частотными колебаниями. А ведь белый цвет - это, по сути, равнобедренный треугольник, обладающий центром вращения (он же точка смешения трех цветов). По аналогичной схеме работает и наше тело, если понимать его как треугольник (но это только если понимать его как треугольник). Если воссоздать в теле подобную точку смешения, то мы сможем получить наивысшую частотную характеристику, связанную с белым цветом. Это не просто электромагнитный эффект, а возможность проживания нашего духа.

Так мы изменяем поведение молекулярных связей внутри нашего тела и можем противопоставить себя магнитному полю. Но самое главное состоит в том, что Максвелл показал поступательность этого движения, то есть наращивание, где можно доказать безграничность развития нашего тела и сознания. И известное правило буравчика, которое мы изучаем, технически несет в себе совсем иное концептуальное осмысление.

Увы, великие знания Максвелла до сих пор преподаются и трактуются неверно. А ведь здесь объясняется возможность понимания, вернее, восприятия физического состояния оси как органа, который наделен электрическими показателями с особой частотой.

Наличие этой оси позволяет человеку сместить все свои энергетические характеристики, создать внутренний «волчок», что, кстати, Максвелл доказал не только посредством своей теории цветов, но и опытом с бросанием кошки вниз (ее способность приземляться на четыре лапы).

Но почему именно цвет столь важен для нас в этой связи? Потому что цветовая реакция на мозг затмила все другие реакции в нашем теле. Не научившись воспринимать цвет и правильно реагировать на него, мы все равно будем зависеть от этой реакции, и она будет мешать всем остальным восприятиям. Цвет - основа нашего зрения, а зрение - основа нашего духа, то есть дух человека питается в первую очередь цветом. Самое важное - разобраться с тремя цветами - красный, зеленый и фиолетовый (синий).

Понятно, что Максвелл не углубился в то, что он выявил, но важно то, что он это обозначил, так как именно здесь закладывается опора образования человека и развития его качества наблюдения. Что бы мы ни делали, мы зависим от цвета - и в месте, где мы живем, и в одежде, которую носим. И даже в пище, которую мы едим. Это реальная система, обладающая физическими показателями и соответствующей силой. Так что этот великий шотландец не только дал человечеству ключи к познанию природы, но и объяснил идею тартана (расцветки клеток ткани у шотландских семейств и организаций), клановости шотландцев, где скрыта комбинация развития клана. Тартан - это формула, которая имеет свои частотные показатели.


Джеймс Максвелл
(1831-1879).

Джеймс Клерк Максвелл родился в Эдинбурге 13 июня 1831 года. Вскоре после рождения мальчика родители увезли его в свое имение Гленлэр. С этого времени "берлога в узком ущелье" прочно вошла в жизнь Максвелла. Здесь жили и умерли его родители, здесь подолгу жил и похоронен он сам.

Когда Джеймсу было восемь лет, в дом пришло несчастье: тяжело заболела его мать и вскоре умерла. Теперь единственным воспитателем Джеймса стал отец, к которому он на всю жизнь сохранил чувство нежной привязанности и дружбы. Джон Максвелл был не только отцом и воспитателем сына, но и его самым верным другом.

Вскоре пришло время, когда мальчику надо было начинать учиться. Сначала приглашали учителей на дом. Но шотландские домашние учителя были такими же грубыми и невежественными, как и их английские коллеги, с таким сарказмом и ненавистью описанные Диккенсом. Поэтому решено было отдать Джеймса в новую школу, носившую громкое название Эдинбургской академии.

Мальчик постепенно втянулся в школьную жизнь. Он стал с большим интересом относиться к урокам. Особенно ему нравилась геометрия. Она на всю жизнь осталась одним из сильнейших увлечений Максвелла. Геометрические образы и модели сыграли огромную роль в его научном творчестве. С нее начался научный путь Максвелла.

Максвелл закончил академию в одном из первых выпусков. На прощанье с полюбившейся школой он сочинил гимн Эдинбургской академии, который дружно и с увлечением распевали ее воспитанники. Теперь перед ним распахнулись двери Эдинбургского университета.

Будучи студентом, Максвелл выполнил серьезное исследование по теории упругости, получившее высокую оценку специалистов. И теперь перед ним встал вопрос о перспективе его дальнейшей учебы в Кембридже.

Старейшим колледжем Кембриджа был основанный в 1284 году колледж св. Петра (Питерхауз), а наиболее знаменит - колледж св. Троицы (Тринити-колледж), основанный в 1546 году. Славу этого колледжа создал его знаменитый питомец Исаак Ньютон. Питерхауз и Тринити-колледж и были последовательно местом пребывания в Кембридже молодого Максвелла. После короткого пребывания в Питерхаузе Максвелл перевелся в Тринити-колледж.

Объем знаний Максвелла, мощь его интеллекта и самостоятельность мышления позволили ему добиться высокого места в своем выпуске. Он занял второе место.

Молодой бакалавр был оставлен в Тринити-колледже в качестве преподавателя. Но его волновали научные проблемы. Помимо его старого увлечения геометрией и проблемой цветов, которыми он начал заниматься еще в 1852 году, Максвелл заинтересовался электричеством.

20 февраля 1854 года Максвелл сообщает Томсону о своем намерении "атаковать электричество". Результатом "атаки" было сочинение "О фарадеевых силовых линиях" - первое из трех основных трудов Максвелла, посвященных изучению электромагнитного поля. Слово "поле" впервые появилось в том самом письме Томсону, но ни в этом, ни в последующем сочинении, посвященном силовым линиям. Максвелл его не употребляет. Это понятие снова появится только в 1864 году в работе "Динамическая теория электромагнитного поля".

Осенью 1856 года Максвелл вступил в должность профессора натуральной философии Маришаль-колледжа в Абердине. Кафедра натуральной философии, т. е. кафедра физики в Абердине, до Максвелла, по сути дела, не существовала, и молодому профессору пришлось организовывать учебную и научную работу по физике.

Пребывание в Абердине ознаменовалось важным событием и в личной жизни Максвелла: он женился на дочери главы Маришаль-колледжа Даниэля Дьюара Кэтрин Мери Дьюар. Произошло это событие в 1858 году. С этого времени и до конца жизни супруги Максвелл проходили свой жизненный путь рука об руку.

В 1857-1859 годах ученый провел свои расчеты движения колец Сатурна. Он показал, что жидкое кольцо при вращении разрушится возникающими в нем волнами и разобьется на отдельные спутники. Максвелл рассматривал движение конечного ряда таких спутников. Труднейшее математическое исследование принесло ему премию Адамса и славу первоклассного математика. Премированное сочинение было издано в 1859 году Кембриджским университетом.

От изучения колец Сатурна совершенно естественным был переход к рассмотрению движений молекул газа. Абердинский период жизни Максвелла закончился выступлением его на собрании Британской ассоциации 1859 года с докладом "О динамической теории газов". Этот документ положил начало многолетним и плодотворным исследованиям Максвелла в области кинетической теории газов и статистической физики.

Так как кафедру, где работал Максвелл, закрыли, ученому пришлось подыскивать новую работу. В 1860 году Максвелла избирают профессором натуральной философии Кинг-колледжа в Лондоне.

Лондонский период ознаменовался публикацией большой статьи "Пояснения к динамической теории газов", которая была опубликована в ведущем английском физическом журнале "Философский журнал" в 1860 году. Этой статьей Максвелл внес огромный вклад в новую отрасль теоретической физики - статистическую физику. Основателями статистической физики в ее классической форме считаются Максвелл, Больцман и Гиббс.

Лето 1860 года перед началом осеннего семестра в Лондоне супруги Максвелл провели в родовом имении Гленлэр. Однако отдохнуть и набраться сил Максвеллу не удалось. Он заболел оспой в тяжелой форме. Врачи опасались за его жизнь. Но необычайное мужество и терпение преданной ему Кэтрин, которая делала все, чтобы выходить больного мужа, помогли им одержать победу над страшной болезнью. Таким тяжелым испытанием началась его лондонская жизнь. В этот период своей жизни Максвелл опубликовал большую статью о цветах, а также работу "Пояснения к динамической теории газов". Но главный труд его жизни был посвящен теории электричества.

Он публикует две основные работы по созданной им теории электромагнитного поля: "О физических силовых линиях" (1861-1862) и "Динамическая теория электромагнитного поля" (1864-1865). За десять лет Максвелл вырос в крупнейшего ученого, творца фундаментальной теории электромагнитных явлений, ставшей наряду с механикой, термодинамикой и статистической физикой одним из устоев классической теоретической физики.

В этот же период жизни Максвелл начал работы по электрическим измерениям. Он был особенно заинтересован в рациональной системе электрических единиц, так как созданная им электромагнитная теория света основывалась только на совпадении отношения электростатических и электромагнитных единиц электричества со скоростью света. Вполне естественно, что он стал одним из активных членов "Комиссии единиц" Британской ассоциации. Кроме того, Максвелл глубоко понимал тесную связь науки и техники, важность этого союза как для прогресса науки, так и для технического прогресса. Поэтому с шестидесятых годов и до конца жизни он неустанно работал в области электрических измерений.

Напряженная лондонская жизнь плохо отразилась на здоровье Максвелла и его жены, и они решили пожить в своем родовом имении Гленлэре. Это решение стало неизбежным после тяжелого заболевания Максвелла в конце летнего отдыха 1865 года, который он, как обычно, проводил в своем имении. Максвелл оставил службу в Лондоне и пять лет (с 1866 по 1871 год) прожил в Гленлэре, выезжая изредка в Кембридж на экзамены, и лишь в 1867 году по совету врачей совершил путешествие в Италию. Занимаясь в Гленлэре хозяйственными делами, Максвелл не оставлял научных занятий. Он напряженно работал над главным трудом своей жизни "Трактатом по электричеству и магнетизму", написал книгу "Теория теплоты", важную работу о регуляторах, ряд статей по кинетической теории газов, участвовал в собраниях Британской ассоциации. Творческая жизнь Максвелла в деревне продолжалась столь же интенсивно, как и в университетском городе.

В 1871 году Максвелл издал в Лондоне книгу "Теория тепла". Этот учебник пользовался большой популярностью. Ученый писал, что целью его книги "Теория тепла" было изложение учения о теплоте "в той последовательности, в которой оно развивалось".

Вскоре после выхода "Теории тепла" Максвелл получил предложение занять вновь организованную кафедру экспериментальной физики в Кембридже. Он согласился и 8 марта 1871 года был назначен кавендишским профессором Кембриджского университета.

В 1873 году выходят "Трактат по электричеству и магнетизму" (в двух томах) и книга "Материя и движение".

"Материя и движение" - это небольшая книжка, посвященная изложению основ механики.

"Трактат по электричеству и магнетизму" - главный труд Максвелла и вершина его научного творчества. В нем он подвел итоги многолетней работы по электромагнетизму, начавшейся еще в начале 1854 года. Предисловие к "Трактату" датировано 1 февраля 1873 года. Девятнадцать лет работал Максвелл над своим основополагающим трудом!

Максвелл рассмотрел всю сумму знаний по электричеству и магнетизму своего времени, начиная с основных фактов электростатики и кончая созданной им электромагнитной теорией света. Он подвел итоги борьбы теорий дальнодействия и близкодействия, начавшейся еще при жизни Ньютона, посвятив последнюю главу своей книги рассмотрению теорий действия на расстоянии. Максвелл не высказался открыто против существовавших до него теорий электричества; он изложил фарадеевскую концепцию как равноправную с господствующими теориями, но весь дух его книги, его подход к анализу электромагнитных явлений были настолько новы и необычны, что современники отказывались понять книгу.

В знаменитом предисловии к "Трактату" Максвелл так характеризует цель своего труда: описать наиболее важные из электромагнитных явлений, показать, как их можно измерить и "проследить математические соотношения между измеряемыми величинами". Он указывает, что постарается "по возможности осветить связь математической формы этой теории и общей динамики, с тем чтобы в известной степени подготовиться к определению тех динамических законов, среди которых нам следовало бы искать иллюстрации или объяснения электромагнитных явлений".

Законы механики Максвелл считает основными законами природы. Не случайно поэтому в качестве фундаментальной предпосылки к основным своим уравнениям электромагнитной теории он излагает основные положения динамики. Но вместе с тем Максвелл понимает, что теория электромагнитных явлений - это качественно новая теория, не сводящаяся к механике, хотя механика и облегчает проникновение в эту новую область явлений природы.

Главные выводы Максвелла сводятся к следующему: переменное магнитное поле, возбуждаемое изменяющимся током, создает в окружающем пространстве электрическое поле, которое в свою очередь возбуждает магнитное поле, и т. д. Изменяющиеся электрические и магнитные поля, взаимно порождая друг друга, образуют единое переменное электромагнитное поле - электромагнитную волну.

Он вывел уравнения, показывающие, что магнитное поле, создаваемое источником тока, распространяется от него с постоянной скоростью. Возникнув, электромагнитное поле распространяется в пространстве со скоростью света 300 000 км/с, занимая все больший и больший объем. Д. Максвелл утверждал, что волны света имеют ту же природу, что и волны, возникающие вокруг провода, в котором есть переменный электрический ток. Они отличаются друг от друга только длиной. Очень короткие волны и есть видимый свет.

В 1874 году он начинает большую историческую работу: изучение научного наследия ученого XVIII века Генри Кавендиша и готовит ее к печати. После исследований Максвелла стало ясно, что Кавендиш задолго до Фарадея открыл влияние диэлектрика на величину электроемкости и за 15 лет до Кулона открыл закон электрических взаимодействий.

Работы Кавендиша по электричеству с описанием экспериментов заняли большой том, вышедший в 1879 году под названием "Статьи по электричеству достопочтенного Генри Кавендиша". Это была последняя книга Максвелла, выпущенная при его жизни. 5 ноября 1879 года в Кембридже он скончался.

Джеймс Кларк Максвелл прожил всего 48 лет, но его вклад в математику, физику и механику трудно переоценить. Сам Альберт Эйнштейн заявил, что теорией относительности он обязан уравнениям Максвелла для электромагниного поля.

В Эдинбурге на улице Индии есть дом, на стене которого висит мемориальная доска:
"Джеймс Кларк Максвелл
Естествоиспытатель
Родился здесь 13 июня 1831 года".

Будущий великий ученый принадлежал к старинной дворянской семье и большую часть детства провел в имении своего отца Миддлби, располагавшемся в Южной Шотландии. Он рос любопытным и активным ребенком, и уже тогда родные отмечали, что его любимые вопросы: "Как это сделать?" и "Как это происходит?".

Когда Джеймсу исполнилось десять, по решению семьи, он поступил в Эдинбургскую академию, где учился прилежно, хотя и не проявляя никаких особых талантов. Однако увлекшись геометрией, Максвелл изобрел новый способ рисования овалов. Содержание его работы, посвященной геометрии овальных кривых, было изложено в "Трудах Эдинбургского королевского общества" за 1846 год. Автору тогда исполнилось только четырнадцать лет. В шестнадцать Максвелл отправился в Эдинбургский университет, выбрав основными предметами физику и математику. Кроме того, он заинтересовался проблемами философии, прослушал курсы логики и метафизики.

Уже упомянутые "Труды Эдинбургского королевского общества" опубликовали еще два сочинения талантливого студента - о кривых качения и об упругих свойствах твердых тел. Последняя тема имела важное значение для строительной механики.

Проучившись в Эдинбурге, девятнадцатилетний Максвелл перебрался в Кембриджский университет, сначала в колледж Святого Петра, потом в более престижный колледж Святой Троицы. Изучение математики там было поставлено на более глубоком уровне, и требования к студентам заметно выше, чем в Эдинбурге. Несмотря на это, Максвеллу удалось показать второй результат на публичном трехступенчатом экзамене по математике на степень бакалавра.

В Кембридже Максвелл много общался с разными людьми, вступил в клуб апостолов, состоявший из 12 членов, объединенных широтой и оригинальностью мышления. Он участвовал в деятельности Рабочего колледжа, созданного для образования простых людей, читал там лекции.

Осенью 1855 года, когда Максвелл закончил учебу, его приняли в состав колледжа Святой Троицы и предложили остаться преподавать. Чуть позже он вошел в Эдинбургское королевское общество - национальное научное объединение Шотландии. В 1856 году Максвелл покинул Кембридж ради профессорского места в Маришальском колледже шотландского города Абердина.

Подружившись с директором колледжа преподобным Дэниэлом Дьюаром, Максвелл познакомился с его дочерью Кэтрин Мэри. Они объявили о помолвке в конце зимы 1858 года, а в июне обвенчались. По воспоминаниям биографа и друга ученого Льюиса Кэмпбелла, их брак оказался примером невероятной преданности. Известно, что Кэтрин помогала мужу в лабораторных исследованиях.

В целом, абердинский период был очень плодотворным в жизни Максвелла. Еще в Кембридже он занялся исследованием строения колец Сатурна, и в 1859 году в свет вышла его монография, где он доказывал, что они представляют собой твердые тела, вращающиеся вокруг планеты. Тогда же ученый написал статью "Пояснения к динамической теории газов", в которой вывел функцию, отражающую распределение молекул газа в зависимости от их скорости, впоследствии названную распределением Максвелла. Это был один из первых примеров статистических законов, которые описывают поведение не одного объекта или отдельной частицы, а поведение множества объектов или частиц. Придуманный исследователем позже "демон Максвелла" - мысленный эксперимент, в котором некое разумное бестелесное существо разделяет молекулы газа по скоростям, - продемонстрировал статистический характер второго закона термодинамики.

В 1860 году несколько колледжей объединили в Абердинский университет и часть кафедр упразднили. Под сокращение попал и молодой профессор Максвелл. Но он недолго оставался без работы, практически сразу его пригласили преподавать в Лондонский королевский колледж, где он пробыл последующие пять лет.

В том же году на собрании Британской ассоциации ученый прочел доклад о своих разработках, касающихся восприятия цвета, за которые позже получил медаль Румфорда от Лондонского королевского общества. Доказывая правоту собственной теории цвета, Максвелл предъявил на суд публики новинку, поразившую ее воображение, - цветную фотографию. До него никто не мог ее получить.

В 1861 году Максвелл получил назначение в Комитет по эталонам, созданный для того, чтобы определить главные электрические единицы.

Кроме того, Максвелл не отказался от исследований упругости твердых тел и за полученные результаты удостоился премии Кейта Эдинбургского королевского общества.

Работая в Лондонском королевском колледже, Максвелл завершил создание своей теории электромагнитного поля. Саму идею поля предложил знаменитый физик Майкл Фарадей, но его знаний не хватало, чтобы представить свое открытие на языке формул. Математическое описание электромагнитных полей стало главной научной проблемой для Максвелла. Опираясь на метод аналогий, благодаря которому было зафиксировано сходство между электрическим взаимодействием и теплопередачей в твердом теле, ученый перенес данные исследований теплоты на электричество и первым смог математически обосновать передачу электрического действия в среде.

1873 год ознаменовался выходом "Трактата об электричестве и магнетизме", чье значение сопоставимо со значением "Математических начал философии" Ньютона. С помощью уравнений Максвелл описал электромагнитные явления, сделал выводы о том, что существуют электромагнитные волны, что они распространяются со скоростью света и сам свет имеет электромагнитную природу.

"Трактат" издали, когда Максвелл уже два года (с 1871) занимал должность главы физической лаборатории Кембриджского университета, чье создание означало признание в ученом сообществе огромной важности экспериментального подхода к исследованиям.

Не менее значимой задачей Максвелл видел популяризацию науки. Для этого он писал статьи для энциклопедии "Британника", работы, где пытался на простом языке объяснить основные представления о материи, движении, электричестве, атомах и молекулах.

В 1879 году здоровье Максвелла сильно пошатнулось. Он знал, что тяжело болен, и его диагноз - рак. Понимая, что обречен, он мужественно переносил боли и спокойно встретил смерть, наступившую 5 ноября 1879 года.

Хотя труды Максвелла получили достойную оценку еще при жизни ученого, но их настоящая значимость стала понятна только годы спустя, когда в ХХ веке понятие поля надежно закрепилось в научном обиходе, а Альберт Эйнштейн заявил, что уравнения Максвелла для электромагнитного поля предшествовали его теории относительности.

Память ученого увековечена в названиях одного из строений Эдинбургского университета, главного корпуса и концертного холла Сэлфордского университета, Центра Джеймса Клерка Максвелла Эдинбургской академии. В Абердине и Кембридже можно найти улицы, названные в его честь. В Вестминстерском аббатстве есть мемориальная плита, посвященная Максвеллу, а посетители картинной галереи Абердинского университета могут увидеть бюст ученого. В 2008 году в Эдинбурге был установлен бронзовый памятник Максвеллу.

Множество организаций и наград также связаны с именем Максвелла. Физическая лаборатория, которой он руководил, учредила стипендию для самых способных аспирантов. Британский Институт физики вручает медаль и премию Максвелла молодым физикам, которые внесли значительный вклад в науку. В Университете Лондона есть должность максвелловского профессора и студенческое общество Максвелла. Созданный в 1977 году, Фонд Максвелла организует конференции по физике и математике.

Наряду с признанием Максвелл был назван самым известным шотландским ученым по итогам опроса 2006 года, всё это свидетельствует о той великой роли, которую он сыграл в истории науки.

История эфира Терентьев Михаил Васильевич

4.3. Джеймс Клерк Максвелл (1831-1879)

Максвелл родился в год открытия Фарадеем электромагнитной индукции, умер в год рождения Альберта Эйнштейна. Значение того, что он сделал в науке, выразил Р. Фейнман в эмоциональном высказывании, приведенном нами в предисловии.

Джеймс Клерк Максвелл (1831-1879)

О Максвелле интересно рассказывать не только потому, что он сделал великое открытие. Он Джеймс Клерк Максвелл - среди немногих людей, которым удалось прожить жизнь чисто, при этом не замыкаясь в себе, не устраняясь от социальной активности; прожить, к сожалению, короткую, но гармоничную жизнь, наполненную в той же мере любовью к науке, как и любовью к людям - родным, женщине, друзьям, коллегам. Он прожил жизнь, не отделимую от природы. В нем была высшая светлая религиозность, не требующая обрядности и аскетизма. Как он сам говорил, его вера слишком глубока, чтобы быть приведенной к какой-то конкретной системе. Максвелл умер от рака, как и его мать. В последний год жизни он знал, что умирает. Физические страдания, которые он переносил без жалоб, были мучительны, но его величие проявилось и в том, как мужественно он принял свою смерть.

Можно было бы считать Максвелла абсолютным идеалом ученого и человека, если бы такая характеристика не вызывала в воображении схематический образ. А Максвелл, напротив, был воплощением жизни. Хорошей иллюстрацией к сказанному могут служить его собственные слова, сказанные еще в молодости: «Для того, чтобы наслаждаться жизнью и пользоваться свободой, он (человек) должен постоянно иметь перед глазами то, что необходимо сделать сегодня. Не то, что нужно было сделать вчера - если он не хочет впасть в отчаяние, и не то, что нужно сделать завтра - если он не хочет быть прожектером... Счастлив тот человек, который в деле сегодняшнего дня видит закономерную часть дела всей жизни». Это не конкретные правила упорядочения жизни, которые формулирует для себя каждый организованный человек. Слова сказаны в связи с общими размышлениями о месте личности в истории, о возможности иметь власть только над мгновением настоящего и именно этим осуществлять единение бесконечного с конечным, не пренебрегая своим сиюминутным существованием.

В жизненном пути Максвелла больше всего удивляет противоречие между кажущейся легкостью и естественностью, с которой, как бы между делом, выполнены его главные работы, и их колоссальным весом в истории науки.

Хронология жизни Максвелла такова. Он родился 13 июня 1831 года в Эдинбурге в Шотландии. Детство провел в Гленлейре - имении отца. В 1841 году поступил в классическую гимназию в Эдинбурге, а в 1847 году - в Эдинбургский университет. В 1850 году Максвелл переводится в Кембридж, сначала в Колледж Св. Петра, а потом в Тринити-Колледж (в нем учился и работал Ньютон). Заканчивает колледж в 1854 году и через год становится его сотрудником. Но вскоре получает кафедру натуральной философии в Маришаль-колледже в шотландском городе Абердине. С 1860 года Максвелл - профессор физики в Королевском колледже Лондонского университета. В 1859 года он пишет классическую работу, вычисляя распределение скоростей молекул газа. В период с 1855 по 1865 годы им сделаны главные работы по теории электромагнитного поля. С 1865 года он прекращает на пять лет научно-преподавательскую деятельность и уезжает в Гленлейр заниматься сельским хозяйством и писать книги. Там был создан его знаменитый «Трактат об электричестве и магнетизме», который вышел в свет в 1873 году. В 1870 году Максвелл возвращается в Кембридж и становится директором Кавендишской лаборатории. В 1879 году он подготавливает к публикации издание трудов Кавендиша. В том же году Максвелл умирает в возрасте 48-ми лет. Дальше мы постараемся прокомментировать и оживить этот сухой перечень биографических фактов.

В одной из ветвей старинного шотландского рода Клерков были два брата - Джон и Джеймс. Старший брат Джон унаследовал титул баронета и богатое имение Пеникуик, а младший брат, Джеймс (дед Максвелла) - пошел в моряки. (В Англии земля не делится при наследовании.) Джон умер бездетным, а Джеймс имел двух сыновей. Его старший сын, Джордж, стал наследником Пеникуика, а младший сын, Джон, (имена в семье не слишком разнообразны) поступил в университет и стал юристом. Он получил в наследство небольшое имение Мидлби, принадлежащее Максвеллам - другой ветви рода Клерков. Так Джон Клерк стал Джоном Клерком-Максвеллом. (В Шотландии была распространена практика присвоения второй фамилии при наследовании земли.) Он женился на дочери судьи Франсез Кей. Эта женщина обладала умом, энергией и чувством юмора. Она смогла внести упорядоченность в безалаберный до женитьбы стиль жизни Джона, который был добр и талантлив, но вовремя не нашел подходящей точки приложения сил. Он как любитель интересовался техникой и естественными науками, ходил на заседания Эдинбургского философского общества, имел ученых друзей, даже опубликовал небольшую заметку по технике, которой очень гордился, любил разговоры на научные темы, но не более того. После женитьбы его жизнь получила новое направление. Вместе с Франсез он принялся расширять и благоустраивать свое имение. Это было в духе времени. Имению дали новое название - Гленлейр («Берлога в узкой долине»). Началось строительство дома, и в здание, еще не законченное полностью, родители перевезли только что родившегося сына - Джеймса Клерка-Максвелла, будущего великого физика. Дом сохранился - в Шотландии строили прочно.

Гленлейр стал для Максвелла отчим домом в самом глубоком смысле - духовно он не порывал с ним никогда, а в переломные моменты жизни всегда возвращался туда, сначала к отцу, а потом, вместе с женой, - как новый хозяин.

Детство Максвелла, несмотря на раннюю смерть матери, было счастливым. Отец сделал для этого все, что мог. В целом благополучной была и его последующая жизнь. Видно, что лишения и жизненная неустроенность необязательны для успешной научной работы. Необязательно для нее и честолюбие, от которого Максвелл также был свободен. Его личность в наибольшей степени сформирована первыми десятью годами жизни, вольно проведенными в общении с мудрым и любящим человеком, который делал ребенка участником всех своих хозяйственных и технических увлечений. Личность Максвелла определена также постоянной связью с живой природой и в детстве, и в течение всей последующей жизни.

Шотландия - красивейшая небольшая страна с населением в несколько миллионов человек, вклад которой в мировую культуру непропорционален ее размерам. Это страна великих поэтов и художников, но она же является родиной высшего технического образования - университеты Эдинбурга и Глазго впервые ввели преподавание инженерных наук. Шотландия дала миру плеяду блестящих инженеров и ученых. Среди них В. Томсон, В. Ранкин, В. Рамсей, Э. Резерфорд, Д. Дьюар и многие другие. Шотландцы упрямы, решительны, осторожны и скептичны, в них нет внешней утонченности, но есть прочность и глубокое ощущение единства с природой. Возможно, эти качества действительно связаны с постоянной неопределенностью климата - такая мысль неоднократно высказывалась. Максвелл как физик принадлежит всему человечеству, но как личность он истинный шотландец, сознающий, где его корни.

Учиться Максвелл начал с 10-ти лет в школе, носящей пышное название Эдинбургской Академии. Он с большим нежеланием покинул отца и Гленлейр, жил в Эдинбурге у тетки мисс Кей, а в учебе поначалу, кроме некоторой тупости и застенчивости, ничем особенным себя не проявлял. Его способности (вместе с интересом к физике и математике) просыпаются примерно к 15-ти годам, а дальше включается какой-то таинственный механизм, производящий необычайную духовную активность, не ослабевающую в течение 30-ти лет.

После поступления сына в Эдинбургский университет отец устраивает в Гленлейре физическую лабораторию, чтобы Джеймс не скучал во время каникул. В 19 лет Максвелл докладывает в Эдинбургском Королевском Обществе первую серьезную научную работу: «О равновесии упругих тел». Круг его чтения в это время широк - греки, Ньютон, Лукреций, Цицерон, Геродот, Кант, Гобс, Юнг, Фурье, позже, в Кембридже, добавились Тацит, Демосфен. При всем этом преподавателям не удается насытить его дополнительными задачами по математике. Необычайные способности Максвелла совершенно очевидны для окружающих, и осенью 1850 года отец решается отдалить его от себя и отправить в Кембридж. Такова была нормальная практика для лучших шотландских студентов - уровень преподавания физики и математики в Кембридже был выше.

Основу английских университетов составляют колледжи, которые возникали обычно в средние века из церковных школ. Университет Кембриджа получил свой статус в 1318 году. К 1850 году он состоял из нескольких колледжей. Наиболее известны колледж Св. Петра («Питерхауз»), основанный в 1284 году и колледж Св. Троицы («Тринити-колледж»), основанный в 1546 году, - место, где учился и работал Ньютон.

Сначала Максвелл поступает в Питерхауз, но через несколько недель переводится в Тринити-колледж, где обстановка ему казалась приятней и по окончании было больше возможностей получения работы в областях, связанных с физикой и математикой. Время с 1851 года до окончания колледжа в 1854 году - период напряженной учебы Максвелла, и как часто бывает у молодых, талантливых людей, его развитие происходит с большой избыточностью - личность щедро тратит энергию, как бы испытывая свои возможности, «играя силой». Все стороны жизни Тринити захватывают Максвелла в это время - от науки, философии, морали до виста и шахмат.

Тьютором Максвелла по колледжу был мистер У. Гопкинс, который ранее готовил Вильяма Томсона (1824-1907) и Джорджа Стокса (1819-1903). («Тьютор» - буквально наставник - должность, в чем-то соответствующая нашему классному руководителю.)

В описываемый период Стоке преподавал в колледже, возглавляя Люкасовскую кафедру (в свое время ее занимал Ньютон). Область математики и физики, в которую Стоксом сделан фундаментальный вклад, позже будет использована Максвеллом для описания электромагнитных явлений. В этом отношении всем нам повезло - Максвелла учили именно те люди, которые должны были это делать.

Впоследствии Гопкинс так сформулировал свое впечатление о Максвелле: «Это был самый экстраординарный человек, которого я когда-либо видел. Он органически был неспособен думать о физике неверно».

Интересны свидетельства друзей Максвелла по колледжу. В частности, м-р Лаусон вспоминает о вечеринке, где состоялось их знакомство: «Максвелл, как обычно, показывал себя знатоком по всем предметам, к которым обращалась дискуссия. Я никогда не встречал таких людей. Я думаю, нет темы, на которую он не мог бы говорить - и хорошо говорить - высказывая удивительные и нестандартные суждения». Лаусон рассказывает еще об одном забавном эпизоде, когда Максвелл по обыкновению забежал к нему утром в комнату поболтать на разные темы. Остановить его было трудно, а Лаусон еще не подготовился к зачету, безуспешно потратив предыдущий день и большую часть ночи на решение задач, поставленных м-ром Гопкинсом. Максвелл спохватывается за полчаса до зачета: «Ну, хватит, я должен пойти заняться задачками, которые нам подкинул старина Гоп». Нужно ли говорить, что к началу зачета все задачи были им правильно решены.

В 1852 году Максвелл избирается в «Клуб Апостолов» - интеллектуальную элиту Кембриджа, небольшой, около 20-ти членов, кружок, основанный математиком и священником Фредериком Морисом. Морис считал, что главный путь к улучшению общества лежит в совершенствовании его культуры. Эту веру разделял и Максвелл, во всяком случае, в течение многих лет он систематически тратил время на чтение популярных лекций рабочим и ремесленникам. Вот неполный перечень тем, по которым Максвелл готовил эссе, доложенные на заседаниях клуба:

«Решительность»,

«Какова природа очевидности замысла»,

«Идиотические ростки (об оккультизме)»,

«Все ли прекрасное в области искусств обязано происхождением природе?»,

«Мораль»,

«Язык и мысль»,

«Возможна ли автобиография?» и т. д.

В начале 1854 года Максвелл держит в Кембридже выпускной экзамен по физике и математике - «трайпос». Это серьезное трехступенчатое соревнование, требующее от студентов многомесячной предварительной подготовки. Победитель получал звание «старшего спорщика», которое ценилось чрезвычайно высоко. Как показывала практика, не менее высоким критериям удовлетворял и занявший второе место «второй спорщик». Были также третий, четвертый и т. д. «спорщики». Самый последний получал прозвище «деревянная ложка». На протяжении всей жизни человека, окончившего Кембридж, при всех его должностных перемещениях в университетской среде, обладатель звания первого или второго спорщика пользовался привилегиями как личность экстраординарная. Удивительно, что на протяжении десятилетий не происходило девальвации такой системы отбора.

Старшим спорщиком в свое время был Дж. Стокс, вторым спорщиком В.Томсон. Вторым спорщиком закончил Кембридж и Дж.К. Максвелл. Первым был Э. Раусс (1831-1907). Раусс впоследствии выполнил ряд важных работ по механике, он стал тьютором Тринити-колледжа и воспитателем Дж. Релея, Дж. Томсона, Л. Лармора - выдающихся физиков, которые, кстати, тоже были первыми спорщиками в своих выпусках. Максвелл разделил с Рауссом первую премию Смита в независимом экзамене по математике, включающем самостоятельное исследование на заданную тему. Уровень этого испытания можно представить, если Дж. Стоке доказал известную теорему в векторном анализе, носящую его имя, выполняя исследование именно на премию Смита.

Позже Максвелл, уже не работая в Кембридже, как и другие лучшие выпускники, многократно участвовал в проведении «трайпоса», специально издалека приезжая для этой цели. Не в этом ли стремлении сохранить традиции и обеспечить решающее влияние выдающихся людей из научной среды состоит одна из главных причин необыкновенной плодотворности университетской системы Кембриджа?

Период с 1854 по 1856 годы является критическим для всей дальнейшей судьбы Максвелла. Какое-то время он без особого энтузиазма пытается писать книгу по оптике. В этой области он сделал работу о цветовом зрении, сконструировал офтальмоскоп, придумал трехцветный волчок для демонстрации своей теории слияния цветов. Но в конце 1854 года Максвелл бросает книгу незаконченной и больше не хочет «...иметь ничего общего с оптикой». Он целиком погружается в изучение электродинамики.

В то время ориентироваться в электродинамике было непросто. Описывая ситуацию так, как она представлялась непрофессионалу, Ф. Энгельс говорит в статье «Электричество»: «...в химии, особенно благодаря дальтоновскому открытию атомных весов, мы находим порядок, относительную устойчивость достигнутых результатов и систематический, почти планомерный натиск на еще незавоеванные области, сравнимый с правильной осадой какой-нибудь крепости.

В учении же об электричестве мы имеем перед собой хаотическую груду старых, ненадежных экспериментов, не получивших ни окончательного подтверждения, ни окончательного опровержения, какое-то неуверенное блуждание во мраке, не связанные друг с другом исследования и опыты многих отдельных ученых, атакующих неизведанную область вразброд, подобно орде кочевых наездников. И в самом деле, в области электричества еще только предстоит сделать открытие, подобное открытию Дальтона, открытие, дающее всей науке средоточие, а исследованию - прочную основу».

И это высказывание сделано в 1882 году, примерно через 20 лет после того, как окончательная теория электромагнитных явлений уже была создана Максвеллом! (Причем, химии никогда не было дано подняться до такой степени строгости и простоты.) Но эта теория еще не была правильно оценена всеми и в доступной форме - в лекциях, книгах - еще не была отражена. Что же говорить об уровне разночтений в начале 50-х годов!

В начале 1854 года Максвелл в письме к Томсону еще спрашивает, что и как изучать по электричеству. В письмах к отцу в 1855 году он жалуется на трудности в понимании работ тяжелых немецких авторов (имеются в виду Вебер, Нейман, Гельмгольц). Но еще раньше по совету Томсона он сосредоточивается на «Экспериментальных исследованиях по электричеству» Фарадея и решает ничего не читать, пока не разберется как следует в том, что говорит Фарадей. В конце 1854 года он уже сообщает Томсону о возникновении нового понимания предмета, которое через год приведет его к написанию работы «О фарадеевских силовых линиях». Именно в ней начата программа, состоящая в переводе Фарадея на язык векторного анализа, которая через несколько лет закончится выводом знаменитых уравнений. Максвелл пишет: «... недавно я был вознагражден, найдя, что масса путаницы начала проясняться под влиянием немногих простых идей». Имеется в виду, что в это время им была найдена пока еще ограниченная аналогия между законами электричества и движением несжимаемой эфирной среды.

Вильям Томсон был на семь лет старше Максвелла, но поскольку его серьезная научная деятельность началась чуть ли не с детского возраста, к 1854 году он был уже одной из самых заметных фигур в физике. (Томсон начал печататься с 15-ти лет. Максвелл написал свою первую научную работу примерно в этом же возрасте, но его последующее развитие происходило медленней.) В 1846 году (в 22 года) Томсон становится профессором физики университета в Глазго и занимает этот пост в течение 53-х лет. Он прожил долгую жизнь, в течение которой много путешествовал и был автором замечательных открытий в физике и технике. Достаточно упомянуть установление им абсолютной шкалы температуры (шкалы Кельвина), формулировку второго начала термодинамики. Широкую общественную известность он получил благодаря важному вкладу в работы по прокладке трансатлантического телеграфного кабеля. В глазах современников в 50-60-е годы он был первым британским физиком. Томсон удостоился звания пэра, дарованного ему королевой Викторией. После этого он стал лордом Кельвиным (титул выбран по названию реки, на которой стоит университет в Глазго).

Максвелл познакомился с Томсоном в Кембридже, где тот проводил ежегодно 1-2 месяца в начале лета. Этих людей в дальнейшем связывали прочные дружеские отношения, неомрачаемые расхождением во взглядах. Нужно сказать, что Томсон до конца жизни не принимал электромагнитную теорию Максвелла.

Бели Дж. Стокс научил Максвелла математической технике, то от Томсона исходит метод физических аналогий, который Максвелл воспринял и использовал с большим мастерством. В 17-летнем возрасте Томсон написал работу, где статическое распределение сил в области, содержащей электрические заряды, было вычислено по аналогии с распределением тепла в твердом теле. Заряды в такой задаче были эквивалентны источникам тепла, а математические соотношения, описывающие электрическое дальнодействие в стандартной интерпретации Кулона и Пуассона, оказывались такими же, как если бы они были получены с помощью механизма теплопередачи, где, как известно, распределение устанавливается локально - от точки к точке - и нет даже намека на дальнодействие. Максвелл хорошо знал эту важную статью и разумно предположить, что она стимулировала его первоначальный интерес к методу аналогий в физике.

Концепцию близкодействия и взгляд на электродинамику как теорию среды, заполняющей пространство между зарядами, магнитами и токами, - все это Максвелл воспринял из работ Фарадея. Европейская физика в то время исповедовала ньютоновские принципы дальнодействия. При этом электродинамика Вебера прекрасно описывала все экспериментальные факты, но должна была допускать существование сил между элементарными магнитами и зарядами, зависящих от скоростей и, может быть, высших производных координат по времени. Подчеркнем, что именно Томсон дал Максвеллу плодотворный совет начинать с изучения Фарадея.

Статью «О фарадеевских силовых линиях» Максвелл заканчивает в 1856 году. Как ни странно, после этого он занимается другими вещами, и должно было пройти несколько лет, прежде, чем фарадеевская тема получила развитие. В течение этого периода «конкурентов» у Максвелла не было - никто в рассматриваемом контексте электродинамикой не занимался. Как уже говорилось, вся область представлялась достаточно сложной и запутанной, а микроструктура электромагнитных взаимодействий еще со времен Лапласа считалась проблемой «туманной и принадлежащей будущему науки».

Максвелл потратил около двух лет (1857-1859) на конкурсную работу по теории колец Сатурна. Он выиграл конкурс. Тонкое понимание механики сплошных сред и молекулярной теории, которого он достиг в процессе решения этой задачи, оказалось важным для его дальнейшей работы. Но Максвелл, конечно, не с этой целью взялся за кольца Сатурна - свою главную цель он еще не осознает. Ему нужно было самоутвердиться в престижном конкурсе и укрепить свое положение в научной среде.

Несмотря на то, что в работе Максвелл, очевидно, не торопился, специальных честолюбивых целей не преследовал, каких-то далеких глобальных задач перед собой не ставил, а просто жил, трудился и делал то, что мог и что в данный момент было ему интересно, тем не менее за шесть лет, с 1856 по 1861 годы, он сделал поразительно много. В 1859 году он докладывает замечательную работу о динамической теории газов. Хотя подробный рассказ о ней не входит в нашу задачу, нельзя не упомянуть, что отсюда начинается история статистической физики. В это же время Максвелл думает об электромагнетизме и в 1861 году пишет свою главную статью: «О физических линиях силы», где впервые появляются знаменитые уравнения. В дальнейшем молекулярная теория и электромагнетизм - его основные темы, хотя в 1864 году, как бы между делом, он пишет статью «О расчете равновесия и жесткости ферм», где фигурируют диаграммы Максвелла-Кремона, которые сейчас изучают студенты в курсе сопротивления материалов.

В 1864-1865 годах появляется «Динамическая теория электромагнитного поля», где предыдущая работа о линиях силы освобождается от «строительных лесов», и уравнения выводятся без ссылок на конкретную модель эфирной среды. Процесс заканчивается изданием «Трактата по электричеству» (1873) - книги, по которой несколько поколений физиков будут знакомиться с содержанием максвелловской теории поля.

К началу 60-х годов Максвелл уже имеет имя в науке. Но он - лишь один среди ряда известных физиков, не более. Его научная карьера совсем не выглядит триумфальной. Членом Тринити-колледжа он становится со второй попытки, через год после «трайпоса». В 26 лет Максвелл, еще не сделав ни одной из своих главных работ, избирается членом Эдинбургского общества физиков, а в 29 лет (в 1860 году) - членом Лондонского Королевского Общества, куда входило всего несколько десятков человек (включая иностранцев). Королевское Общество знаменито тем, что за всю его историю (вплоть до наших дней) ни один из действительно крупных людей в науке не был «забыт». Тем не менее, членами Общества иногда становились ученые со скромным научным багажом. В 1860 году Общество присуждает Максвеллу медаль Румфорда, но не за труды по электричеству и молекулярной теории, а за достижения в области цветового зрения (которые не представляют сейчас большого интереса). И это все его академические отличия на протяжении жизни.

С 1855 года Максвелл - профессор старинного, но периферийного Маришаль-колледжа в Абердине. (Он стремится перебраться из Кембриджа в Шотландию, чтобы быть ближе к отцу. К сожалению, отец умирает летом 1855 года, когда Максвелл еще не успел вступить в должность.) В 1860 году кафедра естественных наук в колледже упраздняется и Максвелл остается без работы. Конкурс на профессорское место в Эдинбурге он проигрывает своему другу П. Тэту, автору нескольких книг и хорошему педагогу. Однако, в конце I860 года он получает должность профессора с большой преподавательской нагрузкой на кафедре естественной философии в Королевском колледже Лондона. Это почти ежедневные лекции девять месяцев в году и, кроме того, раз в неделю вечерние чтения для ремесленников.

Максвелл не был хорошим лектором, несмотря на то, что относился к преподаванию очень ответственно. Слишком велика была пропасть между мало заинтересованной в учении студенческой аудиторией и блестящей личностью лектора, склонного к фантазиям, отвлечениям, аналогиям, понятным, к сожалению, только ему самому. Однако, экзаменатором он был строгим.

В 1865 году Максвелл внезапно уходит из колледжа и живет как фермер в Гленлейре. Через шесть лет возникает идея строительства Кавендишской лаборатории в Кембридже, где, как предполагалось, основными направлениями исследований станут тепло и электричество. Первым предложение занять пост директора получает В. Томсон. Следующим кандидатом был Герман Гельмгольц. Только после их отказа организаторы обращаются с тем же предложением к Максвеллу, который с полным блеском выполнил роль как строитель и первый директор ныне одной из самых знаменитых лабораторий в мире.

Нет ничего удивительного, что современники не отдавали себе отчета в истинном величии этого человека, - Максвелл будет понят и оценен в следующем поколении. Но поражает, с какой беззаботностью он сам относился к таким вещам, с какой щедростью он отдавал другим свое время...

В 1853 году, будучи во время студенческих каникул в гостях у родителей своего друга, Максвелл заболевает. Хозяева - семейство Тейлоров - буквально покорили его теплом и заботой. Рассказывая об этом эпизоде, Максвелл делает характерное высказывание: «Любовь вечна, а знание преходяще». Это говорится в самый напряженный период его интеллектуальной жизни и важно, что это не пустые слова.

В 1855 на протяжении нескольких недель Максвелл проводит лучшие дневные часы у постели заболевшего друга. В 1860 году он предоставляет свой дом больному двоюродному брату и в течение месяца, переселившись на чердак, выхаживает его, как заправская сиделка. В 1867 году он вместе с женой совершает единственное в своей жизни путешествие на материк, посещает несколько городов Европы, но большую часть времени проводит в Италии. В одном из южных городов чета Максвеллов попадает в эпидемию холеры. С риском для здоровья и жизни они работают как санитары, помогая попавшим в беду людям. В Гленлейре Максвелл обычно посещает каждого заболевшего человека в деревне.

Последние годы жизни Максвелла были омрачены тяжелой болезнью жены. Он дежурит у ее постели и, случается, месяцами не спит в собственной кровати. Нужно сказать, что его жена, Катерина-Марина Девор, дочь ректора Маришаль-колледжа, во всех случаях отвечала ему такой же самоотверженностью. Есть свидетельства, что она была женщиной «трудной», но, наверное, это касалось только посторонних. Она жила жизнью Джеймса, помогала ему как могла, хотя Максвеллу и не удалось научить ее физике, что в молодости он считал важным для взаимопонимания. Максвелл никогда не расставался с женой больше, чем на три-четыре дня, и даже во время таких коротких отъездов всегда писал письма. Детей у них не было.

Очень трудно понять, как сам Максвелл оценивал свое место в науке. Начиная с 1865 года, с момента отъезда в Гленлейр (Максвеллу всего 34!), кажется, что стремление к решению новых задач уходит для него куда-то на задний план. Цель он видит теперь в том, чтобы изложить все, что сделано, в систематической форме. Такая работа требовала размышлений. Плодом их в спокойной обстановке Гленлейра явился «Трактат».

Реакция была сдержанной. В. Томсон и Дж. Стокс его не восприняли. Через несколько лет А. Шустер первым начинает читать курс электродинамики, основанный на «Трактате». Его слушают всего три студента. (Среди них - Дж. Дж. Томсон, которому предстоит открыть электрон и быть преемником Максвелла на посту директора Кавендишской лаборатории.) Реакция французов: «сложная и надуманная теория», «отсутствие логики» (П. Дюгем). Людвиг Больцман восхищен красотой уравнений, но считает, что их «нельзя понять». Позиция Гельмгольца оказывается самой конструктивной, он стимулирует Генриха Герца заняться изучением структуры уравнений и проверить факт существования электромагнитных волн, которые предсказываются теорией.

Радикальный поворот происходит после работ Герца. Нового понимания не возникло, но волны были обнаружены экспериментально, а уравнения по форме записи заметно упрощены. То, что теория правильна и дает полное описание электромагнитных явлений, - в этом после Герца уже нельзя сомневаться. Но что за ней стоит - другой вопрос. Послушаем Герца: «Трудно избавиться от чувства, что эти математические формулы живут независимой жизнью и обладают собственным интеллектом, что они мудрее, чем мы сами, мудрее даже, чем их первооткрыватели, и что мы извлекаем из них больше, чем было в них первоначально заложено». По мере того, как терпели неудачи все новые попытки вывести уравнения из механики эфира, таинственная теория вызывала все большее восхищение. Так Г. А. Лоренц скажет: «Трактат» произвел на меня, пожалуй, одно из самых сильных впечатлений жизни».

Но вернемся к биографии Максвелла. Можно предположить, что была еще одна причина, объясняющая внезапный отъезд в Гленлейр. Совершенно постороннее, случайное событие, возможно, сыграло роль в принятии решения, которому мы обязаны существованием «Трактата». В 1865 году Максвелл получил травму головы. Он ударился о сук дерева, пытаясь справиться с лошадью, вышедшей из повиновения. Кроме сотрясения мозга, одним из последствий этого инцидента было сильное рожистое воспаление. Внезапный отъезд в Гленлейр мог означать потерю способностей к оригинальной творческой работе. Два рода деятельности - решение новых задач и писание книг - предъявляют высокие, но разные требования к человеку. (В чем состоят эти различия, очень трудно сформулировать, но, по-видимому, они глубоки, как показывают многочисленные примеры. Именно в теоретической физике часто один род деятельности полностью исключает другой.)

С таким объяснением согласуется и последующая жизнь Максвелла. Согласившись в 1871 году стать директором Кавендишской лаборатории, он возвращается к академической жизни, но не к научной работе - это ясно заранее. Перед ним совершенно новая и сложная задача, требующая организационных способностей и большого здравого смысла.

В 40-е годы Г. Магнус открыл в Берлине первую физическую лабораторию, в 50-е годы В. Томсон организовал лабораторию в Глазго, в 1862 году создается Кларендонская лаборатория в Оксфорде. Но Кембриджский проект отличается от всех предшествующих масштабами и продуманностью мельчайших деталей. Само здание проектировалось с расчетом на будущие прецизионные эксперименты - предусматривалась экранировка от внешних полей, изоляция от сотрясений и множество других технических тонкостей. Лаборатория открывается 16 июня 1874 года. В том же году Максвелл начинает изучение наследия человека, именем которого она названа.

Генри Кавендиш (1731-1810) - совершенно необычная личность в науке. Богач, сын лорда Чарльза Кавендиша, он за долгую жизнь напечатал всего две статьи, но оставил 20 папок рукописей по магнитным и электрическим явлениям, где содержится ряд замечательных результатов, позже вновь полученных другими авторами.

Вернуть истории имя Кавендиша - задача важная, но Максвеллу остается жить всего 5 лет! Он расшифровывает записи, повторяет все опыты и подготавливает книгу «Об электрических исследованиях досточтимого Генри Кавендиша между 1771 и 1781 годами». Книга выходит в 1879 году. Корректуру Максвелл читает уже неизлечимо больным.

Он создал эталон сочинения по истории физики, где надежно проверено каждое высказывание, - вещь почти невозможная в наше время. Не имеет смысла сожалеть, что Максвелл так, а не иначе, распорядился последними годами своей короткой жизни. «Как твои собственные исследования?» - спрашивал его при встрече в этот период друг и биограф Л. Кэмпбелл, на что Максвелл отвечал с грустной, но доброй улыбкой: «Я должен был отказаться в жизни уже от столь многих вещей...».

На самом деле он всегда стремился в жизни все делать хорошо и не случайно выбирал тот или иной путь. В рецензии на одну книгу по физике (В. Гров «О соотношении физических сил») Максвелл говорит: «Не одни только открытия и регистрация их учеными обществами двигают науку. ... Действительный очаг науки - не тома научных трудов, а живой ум человека. И для того, чтобы продвинуть науку, нужно и человеческую мысль направить в нужное русло. ... [Для этого] требуется, чтобы в каждую данную эпоху люди не только мыслили вообще, но чтобы они концентрировали свои мысли на той части обширного поля науки, которая в данный момент требует разработки. В истории мы часто видим, что такое действие производят книги, наводящие на размышления...».

Мы видим, что главные научные достижения Максвелла относятся к десятилетию 1855-1865 годов. В это же время происходит множество других событий в его жизни - неоднократная смена места работы, женитьба, смерть отца. И Максвелл меньше всего выглядит отрешенным фанатиком, ушедшим в узкие научные проблемы. С ясной трезвостью ума он четко программирует свою жизнь, ориентируясь на самое прочное: «...Что касается материальных наук, то именно они кажутся мне прямой дорогой к любой истине, ... касающейся метафизики, собственных мыслей или общества. Сумма знаний, которая существует в этих предметах, берет значительную долю своей ценности от идей, полученных проведением аналогий с материальными науками, а оставшаяся часть, хоть и важна для человечества, есть не научная, а афористическая. Основная философская ценность физики в том, что она дает мозгу что-то определенное, на что можно положиться. Бели вы окажетесь где-то не правы, природа сама скажет об этом... Я обнаружил, что все ученые, продвигавшие своими трудами науку (такие как Дж. Гершель, Фарадей, Ньютон, Юнг), хотя и очень сильно отличались друг от друга по складу своего ума, имели четкость в определениях и были полностью свободны от тирании слов, когда имели дело с вопросами Порядка, Законов и т. п. Этого никогда не смогут достигнуть литераторы и люди, занимающиеся только рассуждениями». А чуть позже (25 марта 1858 года) в шуточном стихотворении он так сформулирует свою позицию, которой никогда не изменял:

Пусть в нашем страшном мире

Жизнь есть труд без смысла и прока.

И все-таки я буду отважно работать,

Пусть считают меня глупцом...

А теперь мы расскажем подробней, что же сделал Максвелл в трех своих знаменитых статьях по электромагнетизму. К сожалению, настоящее понимание этого раздела, в отличие от предшествующих, потребует подготовки в физике и математике. Что поделаешь, - материал усложняется из-за того, что мы углубляемся в существо предмета. Читатель, не имеющий такой подготовки, должен спокойно пропускать непонятные места, поскольку, в конечном счете, ему важны не формулы, а обстоятельства вокруг них.

Первая статья называется «О фарадеевских силовых линиях». Она была зачитана на двух заседаниях Кембриджского Философского Общества 10 октября 1855 года и 11 января 1856 года. Вторая статья «О физических силовых линиях» опубликована в Философском журнале в марте 1861 года. Третья, «Динамическая теория электромагнитного поля», направлена в Королевское Общество 27 октября 1864 года и опубликована в CLX томе Трудов Общества (Transactions).

В «Трактате по электричеству и магнетизму» (1873) содержание этих работ изложено заново. Возможно, к моменту написания «Трактата» взгляды Максвелла претерпели некоторую эволюцию. Во всяком случае, изложение в нем легче вписывается в атмосферу того времени, когда доминировали идеи дальнодействия.

Высшей точкой в творчестве Максвелла, если иметь в виду философскую и методологическую стороны дела, является «Динамическая теория». Эта работа, в особенности ее третья и шестая части («Общие уравнения электромагнитного поля» и «Электромагнитная теория света»), адресованы сразу в XX век. Несомненно Максвелл всегда рассматривал свои уравнения как теорию эфира, подчиняющегося механическим законам, но в данной статье он впервые работает с понятием поля как самостоятельной реальностью и демонстрирует, что с феноменологической точки зрения достаточно иметь только уравнения для поля, а эфир не нужен. Но он впервые пришел к своим главным результатам не в третьей, а во второй статье, которая представляет наибольший интерес для истории физики. Наша цель подробней рассказать именно о ней. Но вторую статью нельзя обсуждать, не изложив содержания первой. Поэтому вариантов нет - придется начинать с самого начала.

В первой статье («О Фарадеевских силовых линиях») не было принципиально новых физических утверждений. Бели бы строгие критерии современных физических журналов существовали в прошлом веке, можно легко представить рецензента, который отклонил бы ее «как не содержащую новых результатов». Но в методическом отношении, прежде всего для самого Максвелла, она была чрезвычайно важна. Интересно, что Фарадей, ознакомившись с текстом, который ему в первую очередь послал Максвелл, был покорен ее математической силой. (Правда, нужно иметь в виду глубокую «невинность» Фарадея в вопросах математической техники.) Работа целиком возникла из размышлений Максвелла над фарадеевскими «Экспериментальными исследованиями по электричеству» и была попыткой выразить математически то, что Фарадей говорил словами. В ней Максвелл находит адекватный математический аппарат, который позже приведет его к окончательному успеху. Истинную ценность статьи можно понять, только зная последующее развитие. В этом смысле следует воспринимать оценку Л. Больцмана, высказанную в 1898 году в примечаниях к немецкому изданию работ Максвелла: «... Эта первая большая работа Максвелла уже содержит в себе изумительно много...».

Максвелл начинает с формулировки основных принципов, по которым должна строиться правильная теория. Как впоследствии отметил тот же Л. Больцман «... последующие исследователи теории познания развили все это подробнее, но... лишь после того, как само развитие совершилось. Здесь же они (принципы) даны еще до начала развития...».

Нужно иметь в виду, что Максвелл не занимается абстрактной философией познания. Его утверждения относятся к проблемам конкретной науки в конкретных обстоятельствах. Он пишет: «... для успешного развития теории необходимо прежде всего упростить выводы прежних исследований и привести их к форме, где разум может их охватить. Результаты такого упрощения могут иметь вид чисто математической формулы или же физической гипотезы. В первом случае мы совершенно теряем из виду объясняемые явления и, хотя мы можем проследить следствия установленных законов, мы не способны получить более широкий взгляд на всевозможные проявления рассматриваемого предмета.

Бели, с другой стороны, мы используем физические гипотезы, то видим явления только через вуаль предубеждения и обязаны этому слепотой по отношению к фактам и грубостью предположений, что предполагает лишь частичное объяснение реальности.

Мы должны поэтому открыть некоторый метод исследования, который позволяет разуму на каждом этапе не отрываться от ясной физической концепции и не быть в то же время связанным какой-нибудь теорией, из которой концепция заимствована. Благодаря этому, мы не будем отвлекаться от предмета преследованием аналитических тонкостей и не отклонимся от истины, подменяя ее излюбленной гипотезой.

Для того, чтобы выработать физические идеи, не принимал до поры какой-либо конкретной физической теории, мы должны использовать существование физических аналогий. Под физической аналогией я понимаю частичное подобие между законами одной науки и законами другой, благодаря чему каждая из них является иллюстрацией для другой...»

Максвелл использует образ несжимаемой жидкости, заполняющей пространство. Никакой реальной физической модели за этим не стоит, хотя для простоты мы будем употреблять слово «модель», обозначая этот образ. Его жидкость - просто собрание воображаемых свойств, иллюстрирующих теоремы чистой математики. Так, он свободно, не заботясь о возможности конкретной реализации, вводит понятие сопротивления R, которое испытывает элемент жидкости при движении в пространстве, и считает, что R пропорционально скорости перемещения этого элемента и (т. е. R = ku). Его жидкость не имеет инерции, т.е. сила сопротивления среды много больше плотности. В таких условиях жидкость движется, если существует давление р - Максвелл вводит такое давление. Линии тока воображаемой жидкости непрерывны во всем пространстве за исключением отдельных точек - «источников» и «стоков». Поверхности постоянного давления всегда перпендикулярны линиям тока.

Представим себе в изотропной среде точечный источник силы S 0 , что эквивалентно целому числу S 0 некоторых единичных источников. Истекающая жидкость будет двигаться так, как показано на рис. 2.

Рис. 2

Если источник действует достаточно долго и распределение жидкости установилось, то в каждый объем в единицу времени втекает ровно столько жидкости, сколько вытекает. При этом, как легко понять, скорость элемента жидкости на расстоянии r от источника будет равна u= S 0 /4?r 2 . Представим теперь воображаемую трубку тока жидкости. Она пересекается в каждом месте воображаемой перпендикулярной поверхностью равного давления. Так, на рис. 3 во всех точках поверхности 1 давление равно p 1 , в точках поверхности 2 - давление p 2 и т.д. Представим себе в этой картине единичный кубический объем жидкости, движущийся перпендикулярно к его граням? 1 и? 2 (см. рис. 4). Поскольку сопротивление, испытываемое таким объемом, равно R = ku, то разность давлений на гранях?p равна -ku. Отсюда следует, что изменение давления на единицу длины вдоль каждой линии тока дается выражением:

Теперь, вспоминая форму закона Кулона, можно отождествить давление p(r) с потенциалом?(r), скорость u(r) - с напряженностью электрического поля (или электродвижущей силой - э. д. с.) Е, источник S 0 - с электрическим зарядом, коэффициент к естественно связывается с диэлектрической проницаемостью среды?. При наличии многих источников в разных точках пространства в рамках сформулированной аналогии получится правильное распределение полей и потенциалов. В итоге Максвелл воспроизводит хорошо известные законы электростатики с помощью механической (точнее - гидродинамической) модели, в которой нет никакого дальнодействия.

Рис. 3

Рис. 4

Вся физика, относящаяся к этому кругу вопросов, описывается одним уравнением:

где?(r) - плотность зарядов, div - стандартная дифференциальная операция, выделяющая из векторного поля E часть, связанную с расходимостью из точки. В статическом случае, когда поле E не зависит от времени, возможна запись E в виде градиента некоторой скалярной функции (потенциала):

E = -grad ?(r). (1)

Все это уже было хорошо известно до Максвелла. Уравнение (А), где вместо поля Е введен потенциал по формуле (1), называется уравнением Пуассона.

Переходя к рассмотрению магнитных явлений и взаимодействия магнитов и токов, Максвелл уже не находит столь простой аналогии. Он становится на путь перевода существующих эмпирических закономерностей на язык дифференциальных уравнений, предполагая, что магнитные величины, в том же смысле, как электрические, как-то могут быть интерпретированы в будущем в терминах гидродинамики новой, магнитной жидкости. Но конкретный образ этой жидкости еще предстоит найти.

В этой работе возникает двойственность, которая будет постоянно прослеживаться дальше. Стремление к механическим аналогиям привязывает Максвелла к своему веку - нельзя же в самом деле писать уравнения для объекта, который явно имеет материальные проявления, в частности, переносит энергию, а с другой стороны, есть «ничто», пустота. В то же время предмет исследования так или иначе не влезает в принятую механическую картину, и Максвеллу приходится следовать логике самих уравнений, оставляя мысль о материальном носителе и признавая неполноту аналогий. Таким образом, то, что он говорил о принципах, на которых должна строиться правильная теория остается (к счастью?) недостижимым идеалом.

Без связи с конкретной моделью Максвелл приходит к дифференциальной формулировке закона индукции Фарадея, но сохраняет надежду, что «при внимательном изучении свойств упругих тел и движения вязких жидкостей» ему удастся найти соответствующий механический образ. Пока же он вводит абстрактный символ A(x,t) - векторный потенциал в современной терминологии - и называет его «электротонической интенсивностью», т.е. мерой «электротонического состояния». Такое гипотетическое состояние вещества было изобретено Фарадеем. Оно проявляется только через свои изменения во времени и пространстве. Сейчас выглядит таинством, как смог Фарадей увидеть эвристическую ценность в таком странном действии - введении ненаблюдаемой характеристики. На первый взгляд не меньшим чудом кажется то, что именно в этом пункте туманным рассуждениям Фарадея Максвелл смог придать однозначную математическую интерпретацию. Максвелл постулирует закон: «Полная электротоническая интенсивность вдоль границы элемента поверхности служит мерой количества магнитной индукции, проходящей через этот элемент или, другими словами, мерой числа силовых линий, пронизывающих данный элемент». В дифференциальной форме (для бесконечно малых элементов поверхности) этот закон записывается в виде:

Глава 4 Возникновение концепции электромагнитного поля. М. Фарадей, Дж. К. Максвелл 4.1. Англия в XIX веке Невозможно найти прямую связь между такими событиями как открытие Фарадеем самоиндукции (1831), введением Максвеллом тока смещения (1867) и, скажем, парламентской реформой

Из книги Фарадей. Электромагнитная индукция [Наука высокого напряжения] автора Кастильо Сержио Рарра

ТЕОРЕТИЧЕСКИЕ ОТГОЛОСКИ: МАКСВЕЛЛ И ЭЙНШТЕЙН Открытие электромагнитной индукции суммировало все последующие эксперименты, проведенные после первого и являющиеся его вариациями. Весной 1832 года Фарадей создал и опробовал в действии самые разные катушки, гальванометры и

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

Пол Франклин, Оливер Джеймс, Эжени фон Танзелманн: команда по созданию визуальных эффектов Однажды в разгар мая мне позвонил Крис. Он хотел послать ко мне домой парня по имени Пол Франклин, чтобы мы обсудили с ним компьютерную графику для «Интерстеллар». Пол приехал