Урок "Как построить график функции у = f(kx), если известен график функции y = f(x)". Основные свойства функций

Являясь неразрывно связанными между собой, оба они уже несколько столетий активно используются при решении практически всех задач, которые возникали в процессе научно-технической деятельности человека.

Возникновение понятия о дифференциале

Впервые разъяснил, что такое дифференциал, один из создателей (наряду с Исааком Ньютоном) дифференциального исчисления знаменитый немецкий математик Готфрид Вильгельм Лейбниц. До этого математиками 17 ст. использовалось весьма нечеткое и расплывчатое представление о некоторой бесконечно малой «неделимой» части любой известной функции, представлявшей очень малую постоянную величину, но не равную нулю, меньше которой значения функции быть просто не могут. Отсюда был всего один шаг до введения представления о бесконечно малых приращениях аргументов функций и соответствующих им приращениях самих функций, выражаемых через производные последних. И этот шаг был сделан практически одновременно двумя вышеупомянутыми великими учеными.

Исходя из необходимости решения насущных практических задач механики, которые ставила перед наукой бурно развивающаяся промышленность и техника, Ньютон и Лейбниц создали общие способы нахождения скорости изменения функций (прежде всего применительно к механической скорости движения тела по известной траектории), что привело к введению таких понятий, как производная и дифференциал функции, а также нашли алгоритм решения обратной задачи, как по известной (переменной) скорости найти пройденный путь, что привело к появлению понятия интеграла.

В трудах Лейбница и Ньютона впервые появилось представление о том, что дифференциалы - это пропорциональные приращениям аргументов Δх основные части приращений функций Δу, которые могут быть с успехом применены для вычисления значений последних. Иначе говоря, ими было открыто, что приращение функции может быть в любой точке (внутри области ее определения) выражено через ее производную как Δу = y"(x) Δх + αΔх, где α Δх - остаточный член, стремящийся к нулю при Δх→0, гораздо быстрее, чем само Δх.

Согласно основоположникам матанализа, дифференциалы - это как раз и есть первые члены в выражениях приращений любых функций. Еще не обладая четко сформулированным понятием предела последовательностей, они интуитивно поняли, что величина дифференциала стремится к производной функции при Δх→0 - Δу/Δх→ y"(x).

В отличие от Ньютона, который был прежде всего физиком, и рассматривал математический аппарат как вспомогательный инструмент исследования физических задач, Лейбниц уделял большее внимание самому этому инструментарию, включая и систему наглядных и понятных обозначений математических величин. Именно он предложил общепринятые обозначения дифференциалов функции dy = y"(x)dx, аргумента dx и производной функции в виде их отношения y"(x) = dy/dx.

Современное определение

Что такое дифференциал с точки зрения современной математики? Он тесно связан с понятием приращения переменной величины. Если переменная y принимает сначала значение y = y 1 , а затем y = y 2 , то разность y 2 ─ y 1 называется приращением величины y.

Приращение может быть положительным. отрицательным и равным нулю. Слово «приращение» обозначается Δ, запись Δу (читается «дельта игрек») обозначает приращение величины y. так что Δу = y 2 ─ y 1 .

Если величину Δу произвольной функции y = f (x) возможно представить в виде Δу = A Δх + α, где у A нет зависимости от Δх, т. е. A = const при данном х, а слагаемое α при Δх→0 стремится к нему же еще быстрее, чем само Δх, тогда первый («главный») член, пропорциональный Δх, и является для y = f (x) дифференциалом, обозначаемымdy или df(x) (читается «дэ игрек», «дэ эф от икс»). Поэтому дифференциалы - это «главные» линейные относительно Δх составляющие приращений функций.

Механическое истолкование

Пусть s = f (t) - расстояние прямолинейно движущейся от начального положения (t - время пребывания в пути). Приращение Δs - это путь точки за интервал времени Δt, а дифференциал ds = f" (t) Δt - это путь, который точка прошла бы за то же время Δt, если бы она сохранила скорость f"(t), достигнутую к моменту t. При бесконечно малом Δt воображаемый путь ds отличается от истинного Δs на бесконечно малую величину, имеющую высший порядок относительно Δt. Если скорость в момент t не равна нулю, то ds дает приближенную величину малого смещения точки.

Геометрическая интерпретация

Пусть линия L является графиком y = f (x). Тогда Δ х= MQ, Δу = QM" (см. рисунок ниже). Касательная MN разбивает отрезок Δу на две части, QN и NM". Первая пропорциональна Δх и равна QN = MQ∙tg (угла QMN) = Δх f "(x), т. е QN есть дифференциал dy.

Вторая часть NM"дает разность Δу ─ dy, при Δх→0 длина NM" уменьшается еще быстрее, чем приращение аргумента, т.е у нее порядок малости выше, чем у Δх. В рассматриваемом случае, при f "(x) ≠ 0 (касательная не параллельна ОХ), отрезки QM"и QN эквивалентны; иными словами NM" уменьшается быстрее (порядок малости ее выше), чем полное приращение Δу = QM". Это видно на рисунке (с приближением M"к М отрезок NM"составляет все меньший процент отрезка QM").

Итак, графически дифференциал произвольной функции равен величине приращения ординаты ее касательной.

Производная и дифференциал

Коэффициент A в первом слагаемом выражения приращения функции равен величине ее производной f "(x). Таким образом, имеет место следующее соотношение - dy = f "(x)Δх, или же df (x) = f "(x)Δх.

Известно, что приращение независимого аргумента равно его дифференциалу Δх = dx. Соответственно, можно написать: f "(x) dx = dy.

Нахождение (иногда говорят, «решение») дифференциалов выполняется по тем же правилам, что и для производных. Перечень их приведен ниже.

Что более универсально: приращение аргумента или его дифференциал

Здесь необходимо сделать некоторые пояснения. Представление величиной f "(x)Δх дифференциала возможно при рассмотрении х в качестве аргумента. Но функция может быть сложной, в которой х может быть функцией некоторого аргумента t. Тогда представление дифференциала выражением f "(x)Δх, как правило, невозможно; кроме случая линейной зависимости х = at + b.

Что же касается формулы f "(x)dx= dy, то и в случае независимого аргумента х (тогда dx = Δх), и в случае параметрической зависимости х от t, она представляет дифференциал.

Например, выражение 2 x Δх представляет для y = x 2 ее дифференциал, когда х есть аргумент. Положим теперь х= t 2 и будем считать t аргументом. Тогда y = x 2 = t 4 .

Это выражение не пропорционально Δt и потому теперь 2xΔх не является дифференциалом. Его можно найти из уравнения y = x 2 = t 4 . Он оказывается равен dy=4t 3 Δt.

Если же взять выражение 2xdx, то оно представляет дифференциал y = x 2 при любом аргументе t. Действительно, при х= t 2 получим dx = 2tΔt.

Значит 2xdx = 2t 2 2tΔt = 4t 3 Δt, т. е. выражения дифференциалов, записанные через две разные переменные, совпали.

Замена приращений дифференциалами

Если f "(x) ≠ 0, то Δу и dy эквивалентны (при Δх→0); при f "(x) = 0 (что означает и dy = 0), они не эквивалентны.

Например, если y = x 2 , то Δу = (x + Δх) 2 ─ x 2 = 2xΔх + Δх 2 , а dy=2xΔх. Если х=3, то имеем Δу = 6Δх + Δх 2 и dy = 6Δх, которые эквивалентны вследствие Δх 2 →0, при х=0 величины Δу = Δх 2 и dy=0 не эквивалентны.

Этот факт, вместе с простой структурой дифференциала (т. е. линейности по отношению к Δх), часто используется в приближенных вычислениях, в предположении, что Δу ≈ dy для малых Δх. Найти дифференциал функции, как правило, легче, чем вычислить точное значение приращения.

Например, имеем металлический куб с ребром х=10,00 см. При нагревании ребро удлинилось на Δх = 0,001 см. Насколько увеличился объем V куба? Имеем V = х 2 , так что dV = 3x 2 Δх = 3∙10 2 ∙0/01 = 3 (см 3). Увеличение объема ΔV эквивалентно дифференциалу dV, так что ΔV = 3 см 3 . Полное вычисление дало бы ΔV =10,01 3 ─ 10 3 = 3,003001. Но в этом результате все цифры, кроме первой ненадежны; значит, все равно, нужно округлить его до 3 см 3 .

Очевидно, что такой подход является полезным, только если возможно оценить величину привносимой при этом ошибки.

Дифференциал функции: примеры

Попробуем найти дифференциал функции y = x 3 , не находя производной. Дадим аргументу приращение и определим Δу.

Δу = (Δх + x) 3 ─ x 3 = 3x 2 Δх + (3xΔх 2 + Δх 3).

Здесь коэффициент A= 3x 2 не зависит от Δх, так что первый член пропорционален Δх, другой же член 3xΔх 2 + Δх 3 при Δх→0 уменьшается быстрее, чем приращение аргумента. Стало быть, член 3x 2 Δх есть дифференциал y = x 3:

dy=3x 2 Δх=3x 2 dx или же d(x 3) = 3x 2 dx.

При этом d(x 3) / dx = 3x 2 .

Найдем теперь dy функции y = 1/x через ее производную. Тогда d(1/x) / dx = ─1/х 2 . Поэтому dy = ─ Δх/х 2 .

Дифференциалы основных алгебраических функций приведены ниже.

Приближенные вычисления с применением дифференциала

Вычислить функцию f (x), а также ее производную f "(x) при x=a часто нетрудно, а вот сделать то же самое в окрестности точки x=a бывает нелегко. Тогда на помощь приходит приближенное выражение

f(a + Δх) ≈ f "(a)Δх + f(a).

Оно дает приближенное значение функции при малых приращениях Δх через ее дифференциал f "(a)Δх.

Следовательно, данная формула дает приближенное выражение для функции в конечной точке некоторого участка длиной Δх в виде суммы ее значения в начальной точке этого участка (x=a) и дифференциала в той же начальной точке. Погрешность такого способа определения значения функции иллюстрирует рисунок ниже.

Однако известно и точное выражение значения функции для x=a+Δх, даваемое формулой конечных приращений (или, иначе, формулой Лагранжа)

f(a+ Δх) ≈ f "(ξ) Δх + f(a),

где точка x = a+ ξ находится на отрезке от x = a до x = a + Δх, хотя точное положение ее неизвестно. Точная формула позволяет оценивать погрешность приближенной формулы. Если же в формуле Лагранжа положить ξ = Δх /2, то хотя она и перестает быть точной, но дает, как правило, гораздо лучшее приближение, чем исходное выражение через дифференциал.

Оценка погрешности формул при помощи применения дифференциала

В принципе неточны, и привносят в данные измерений, соответствующие ошибки. Их характеризуют предельной или, короче, предельной погрешностью - положительным числом, заведомо превышающим эту ошибку по абсолютной величине (или в крайнем случае равным ей). Предельной называют частное от ее деления на абсолютное значение измеренной величины.

Пусть точная формула y= f (x) использована для вычисляения функции y, но значение x есть результат измерения и поэтому привносит в y ошибку. Тогда, чтобы найти предельную абсолютную погрешность │‌‌Δу│функции y, используют формулу

│‌‌Δу│≈│‌‌dy│=│ f "(x)││Δх│,

где │Δх│является предельной погрешностью аргумента. Величину │‌‌Δу│ следует округлить в сторону увеличения, т.к. неточной является сама замена вычисления приращения на вычисление дифференциала.

>>Математика:Что означает в математике запись у = f(x)

Что означает в математике запись у = f(x)

Изучая какой-либо реальный процесс, обычно обращают внимание на две величины, участвующие в процессе (в более сложных процессах участвуют не две величины, а три, четыре и т.д., но мы пока такие процессы не рассматриваем): одна из них меняется как бы сама по себе, независимо ни от чего (такую переменную мы обозначили буквой х), а другая величина принимает значения, которые зависят от выбранных значений переменной х (такую зависимую переменную мы обозначили буквой у). Математической моделью реального процесса как раз и является запись на математическом языке зависимости у от х, т.е. связи между переменными х и у. Еще раз напомним, что к настоящему моменту мы изучили следующие математические модели: у = b, у = kx, y = kx + m, у = х 2 .

Есть ли у этих математических моделей что-либо общее? Есть! Их структура одинакова: у = f(x).

Эту запись следует понимать так: имеется выражение f(x) с переменной х, с помощью которого находятся значения переменной у.

Математики предпочитают запись у = f(x) не случайно. Пусть, например, f(x) = х 2 , т. е. речь идет о функции у = х 2 . Пусть нам надо выделить несколько значений аргумента и соответствующих значений функции. До сих пор мы писали так:

если х = 1, то у = I 2 = 1;
если х = - 3, то у = (- З) 2 = 9 и т. д.

Если же использовать обозначение f(x) = х 2 , то запись становится более экономной:

f(1) = 1 2 =1;
f(-3) = (-3) 2 = 9.

Итак, мы познакомились еще с одним фрагментом математического языка : фраза «значение функции у = х 2 в точке х = 2 равно 4» записывается короче:

«если у = f(x), где f(x) = x 2 , то f(2) = 4».

А вот образец обратного перевода:

Если у = f(x), где f(x) = x 2 , то f(- 3) = 9. По-другому - значение функции у = х 2 в точке х = - 3 равно 9.

П р и м е р 1. Дана функция у = f(x), где f(x) = х 3 . Вычислить:

а) f(1); б) f(- 4); в) f(о); г) f(2а);
д) f(а-1); е) f(3х); ж) f(-х).

Решение. Во всех случаях план действий один и тот же: нужно в выражении f(x) подставить вместо х то значение аргумента, которое указано в скобках, и выполнить соответствующие вычисления и преобразования. Имеем:

Замечание. Разумеется, вместо буквы f можно использовать любую другую букву (в основном, из латинского алфавита): g(x), h (х), s (х) и т. д.

Пример 2. Даны две функции: у = f(x), где f(x) = х 2 , и у = g (х), где g (х) = х 3 . Доказать, что:

а) f(-x) = f(x); b) g(-x)= -g(x).

Р е ш е н и е. а) Так как f(x) = х 2 , то f(- х) = (- х) 2 = х 2 . Итак, f(x) = х 2 , f(- х) = х 2 , значит, f(- x) =f (x)

б) Так как g{x) = х 3 , то g(- x) = -x 3 , т.e. g(-x) = -g(x).

Использование математической модели вида у = f(x) оказывается удобным во многих случаях, в частности, тогда, когда реальный процесс описывается различными формулами на разных промежутках изменения независимой переменной.

Опишем с помощью построенного на рисунке 68 графика некоторые свойства функции у - f(x) - такое описание свойств обычно называют чтением графика.

Чтение графика - это своеобразный переход от геометрической модели (от графической модели) к словесной модели (к описанию свойств функции). А
построение графика - это переход от аналитической модели (она представлена в условии примера 4) к геометрической модели.

Итак, приступаем к чтению графика функции у = f(x) (см. рис. 68).

1. Независимая переменная х пробегает все значения от - 4 до 4. Иными словами, для каждого значения х из отрезка [- 4, 4] можно вычислить значение функции f(x). Говорят так: [-4, 4] - область определения функции.

Почему при решении примера 4 мы сказали, что найти f(5) нельзя? Да потому, что значение х = 5 не принадлежит области определения функции.

2. y наим = -2 (этого значения функция достигает при х = -4); У нанб. = 2 (этого значения функция достигает в любой точке полуинтервала (0, 4].

3. у = 0, если 1 = -2 и если х = 0; в этих точках график функции y = f(x) пересекает ось х.

4. у > 0, если х є (-2, 0) или если x є (0, 4]; на этих промежутках график функции y = f(x) расположен выше оси х.

5. у < 0, если же [- 4, - 2); на этом промежутке график функции у = f(x) расположен ниже оси х.

6. Функция возрастает на отрезке [-4, -1], убывает на отрезке [-1, 0] и постоянна (ни возрастает, ни убывает) на полуинтервале (0,4].

По мере того как мы с вами будем изучать новые свойства функций, процесс чтения графика будет становиться более насыщенным, содержательным и интересным.

Обсудим одно из таких новых свойств. График функции, рассмотренной в примере 4, состоит из трех ветвей (из трех «кусочков»). Первая и вторая ветви (отрезок прямой у = х + 2 и часть параболы) «состыкованы» удачно: отрезок заканчивается в к точке (-1; 1), а участок параболы начинается в той же точке. А вот вторая и третья ветви менее удачно «состыкованы»: третья ветвь («кусочек» горизонтальной прямой) начинается не в точке (0; 0), а в точке (0; 4). Математики говорят так: «функция у = f(x) претерпевает разрыв при х = 0 (или в точке х = 0)». Если же функция не имеет точек разрыва, то ее называют непрерывной. Так, все функции, с которыми мы познакомились в предыдущих параграфах (у = b, y = kx, y = kx + m, y = x2) - непрерывные.

Пример 5 . Дана функция . Требуется построить и прочитать ее график.

Решение. Как видите, здесь функция задана достаточно сложным выражением. Но математика - единая и цельная наука, ее разделы тесно связаны друг с другом. Воспользуемся тем, что мы изучали в главе 5, и сократим алгебраическую дробь

справедливо лишь при ограничении Следовательно, мы можем переформулировать задачу так: вместо функции у = х 2
будем рассматривать функцию у = х 2 , где Построим на координатной плоскости хОу параболу у = х 2 .
Прямая х = 2 пересекает ее в точке (2; 4). Но по условию , значит, точку (2; 4) параболы мы должны исключить из рассмотрения, для чего на чертеже отметим эту точку светлым кружком.

Таким образом, график функции построен - это парабола у = х 2 с «выколотой» точкой (2; 4) (рис. 69).


Перейдем к описанию свойств функции у = f (x), т. е. к чтению ее графика:

1. Независимая переменная х принимает любые значения, кроме х = 2. Значит, область определения функции состоит из двух открытых лучей (- 0 о, 2) и

2. у наим = 0 (достигается при х = 0), у наиб _ не существует.

3. Функция не является непрерывной, она претерпевает разрыв при х = 2 (в точке х = 2).

4. у = 0, если х = 0.

5. у > 0, если х є (-оо, 0), если х є (0, 2) и если х є (B,+оо).
6. Функция убывает на луче (- со, 0], возрастает на полуинтервале .

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если задано множество чисел X и указан способ f , по которому для каждого значения х ЄX ставится в соответствие только одно число у . Тогда считается заданной функция y = f (х ), у которой область определения X (обычно обозначают D (f ) = X ). Множество Y всех значений у , для которых есть как минимум одно значение х ЄX , такое, что y = f (х ), такое множество называют множеством значений функции f (чаще всего обозначают E (f )= Y ).

Или зависимость одной переменной у от другой х , при которой каждому значению переменной х из определенного множества D соответствует единственное значение переменной у , называется функцией .

Функциональную зависимость переменной у от х часто подчеркивают записью у(х), которую читают игрек от икс.

Область определения функции у (х ), т. е. множество значений ее аргумента х , обозначают символом D (y ), который читают дэ от игрек.

Область значений функции у (х ), т. е. множество значений, которые принимает функция у, обозначают символом Е (у ), который читают е от игрек.

Основными способами задания функции являются:

а) аналитический (с помощью формулы y = f (х )). К этому способу можно отнести и случаи, когда функция задается системой уравнений. Если функция задана формулой, то область ее определения составляют все те значения аргумента, при которых выражение, записанное в правой части формулы, имеет значения.

б) табличный (с помощью таблицы соответствующих значений х и у ). Таким способом часто задается температурный режим или курсы валют, но этот способ не такой наглядный, как следующий;

в) графический (с помощью графика). Это один из самых наглядных способов задания функции, поскольку по графику сразу "читаются" изменения. Если функция у (х ) задана графиком, то область ее определения D (y ) есть проекция графика на ось абсцисс, а область значений Е (у ) - проекция графика на ось ординат (смотри рисунок).

г) словестный . Этот способ часто применяется в задачах, а точнее в описании их условия. Обычно этот способ заменяют одним из приведенных выше.

Функции y = f (х ), x ЄX , и y = g (х ), x ЄX , называются тождественно равными на подмножестве М СX , если для каждого x 0 ЄМ справедливо равенство f (х 0) = g (х 0).

График функции y = f (х ) можно представить, как множество таких точек (х ; f (х )) на координатной плоскости, где х - произвольная переменная, из D (f ). Если f (х 0) = 0, где х 0 то точка с координатами (x 0 ; 0) - это точка, в которой график функции y = f (х ) пересекается с осью Оx . Если 0ЄD (f ), то точка (0; f (0)) - это точка, в которой график функции у = f (x ) пересекается с осью Оу .

Число х 0 из D (f ) функции y = f (х ) это нуль функции, тогда, когда f (х 0) = 0.

Промежуток М СD (f ) это промежуток знакопостоянства функции y = f (х ), если либо для произвольного x ЄМ верно f (х ) > 0, либо для произвольного х ЄМ верно f (х ) < 0.

Есть приборы , которые вырисовывают графики зависимостей между величинами. Это барографы - приборы для фиксации зависимости атмосферного давления от времени, термографы - приборы для фиксации зависимости температуры от времени, кардиографы - приборы для графической регистрации деятельности сердца. У термографа есть барабан, он равномерно вращается. Бумаги, намотанной на барабан, касается самописец, который в зависимости от температуры поднимается и опускается и вырисовывает на бумаге определенную линию.

От представления функции формулой можно перейти к ее представлению таблицей и графиком.

При изучении математики очень важно понимать, что такое функция, ее области определения и значения. С помощью исследования функций на экстремум можно решить многие задачи по алгебре. Даже задачи по геометрии иногда сводятся к рассмотрению уравнений геометрических фигур на плоскости.

ФУНКЦИЯ - F(X) y=f(x).

Что такое функция f(х)?
Как бывший школьный учитель математики напоминаю тем, кто забыл.
Y – функция, Х-аргумент, f- закон, по которому находим Y.
Пример:
Поезд идет со средней скоростью 30 км. в час. Два часа в пути – 60 км прошел. 4 часа в пути – 120 км. и т.д. Чем больше времени поезд в пути, тем большее расстояние он проходит. Х и Y –переменные величины, и функция y =f(x) ,где Y – расстояние, a X – время в пути, и есть необходимый закон.
Вспомнили? Я тоже вспомнил, нo другое.
По окончании физмата Хабаровского пединститута меня направили на работу в Биробиджан, в школу номер 6, которая располагалась в поселке Сопка, за рекой, где стоял военный гарнизон, довольно многочисленный, со своим госпиталем, Домом офицеров, мастерскими по ремонту танков, деревянными двухэтажными домами, где жили семьи военослужащих.
Школа имела два здания: большое, кирпичное, двухэтажное, и маленькое, деревянное, одноэтажное, где располагались классы начальной школы – с 1-го по 4-й. В ней меня и поселили. В маленьком угловом классе я жил с бабушкой, которая поехала со мной, зная мою житейскую неприспособленность. Она мне варила, стирала, сидела рядом, когда я проверял тетради, защищала от работников местного КЭЧ, которые сильно хотели забрать наши две кровати, числящиеся у них на учете.
Зарплата была минимальная для учителя. 18 рабочих часов в неделю, три 5-х класса, самый трудный для учителя возраст. Денег нехватало даже на еду, и бабушка отказалась от мяса, ела картошку, так как считала, что мясо стоит слишком дорого. Хорошо, что не нужно было платить за свет, печное отопление и канализацию, которой не было. Кроме того, в классе, в котором я был классным руководителем, учились дети высокопоставленных офицеров гарнизона: сын командира части полковника Андронова, сын начальника госпиталя подполковника мед, службы Заровняева, дочь начмеда Жекова, дети врачей госпиталя и офицеров. Контроль за моей деятельностью, как воспитателя, был постоянный. Надо сказать, что дети этих высоких чинов были исключительно дисциплинированными, все они учились только на отлично, с ними было приятно работать. Мне был 21 год, я играл с ними в баскетбол, футбол, но, к сожалению, это не прибавляло денег в мой кошелек. К тому же, в классе учились и другие дети, которые резко отличались по уровню развития от детей военных.
Но мне, случайно, улыбнулась удача. Моя коллега сообщила мне, что требуется, временно, преподаватель математики в «Школу паровозных машинистов», которая существовала в то время в Биробиджане.
Это был хороший приработок. Меня приняли преподавателем по совместительству.
Известно, что на тепловозную тягу Дальний Восток перешел последним на Транссибе.
Студентами «Школы" были мужики, все старше меня: демобилизованные солдаты, бывшие заключенные, которых на Дальнем Востоке всегда было много, бывшие деревенские жители, часто малограмотные, хотя принимали в школу только закончивших семилетку. Школа давала им шанс хорошего заработка, и они «грызли гранит науки» очень добросовестно, хотя многим было трудно.

Однажды, когда я проверял тетради, бабушка привела посетителя, который искал в здании средней школы «Владимира Давидовича». Оказалось – курсант «Школы» по имени Вася Дорошенко, бывший деревенский житель из пригородного совхоза. Поставил на стол чемоданчик, открыл. Там – бутылка водки с закуской: деревенская колбаса, копченое мясо, деревенский хлеб. Я – опешил.
Васю я приметил давно, Он ничего не понимал из моих обьяснений, от опросов уклонялся, контрольные списывал.
-Что тебя привело ко мне?
-Владимир Давидович, я все понимаю, что Вы обьясняете, но функция F(X) ! Что это?
Мы с бабушкой еле-еле заставили Васю сложить все принесенное обратно в чемодан, я отставил в сторону тетради, и мы начали занятия. К своему ужасу, я обнаружил, что Вася не знает таблицы умножения. Дла меня это был шок. Теперь, с высоты своих лет и опыта я понимаю всю нищету моих тогдашних понятий. В дальнейшей своей жизни мне встретились и директор музыкальной школы, который всегда ходил с карандашом, на котором была таблица умножения, и жена моего друга, русского писателя Эдуарда П…… Наталия К........., - бывший преподаватель МАИ - профессор математики, которая сама мне сказала, что таблицу не знает до сих пор.
Но тогда, в далекой молодости, мне это казалось невероятным, отбивало охоту что-то обьяснять. Я сосредоточился на функции
F(x). Долго обьяснял, приводил примеры, что-то получилось. Вася встал удовлетворенный. Опять открыл чемодан, предложил выпить и закусить. Для меня выпивка - острый нож в сердце. Душа не приемлет, возможно, на генетическом уровне, хотя мой отец вернулся с фронта с большим пристрастием к водке.
Ах, водка! Сколько раз мне пришлось ее выливать незаметно, заменять, отдавать, когда участвовал в застольях, как гармонист, затем, баянист! Ведь на Руси всегда первый стакан – гармонисту!
Наконец, мы убедили Васю снова собрать все в чемоданчик. Он сказал, что идет в туалет и больше не вернулся. Чемоданчик остался на столе.
Я боялся, что его примеру последуют и другие курсанты, имеющие с математикой проблемы, но обошлось. Очевидно, сработал слух, что я не пью.
Вася «Школу» закончил. Я уже там в это время не работал, вернулась прежняя преподавательница, которая была в декрете. Скоро «Школу» закрыли. Дорога переходила на тепловозную тягу, значит снова Васе учиться. Мне, наконец, дали две небольшие комнаты в «коммуналке» и мои родители, жившие в городке Пограничный, возле Уссурийска, все бросили и приехали ко мне.
А Вася? Думаю, что стал достойным железнодорожником и без функции Y = F(X).
А эта функция, как маленький золотой ключик, открывает потайную дверь в ту область знаний, которая приучает человека мыслить отвлеченно, абстрактно и которая на всех великих языках называется почти одинаково – МАТЕМАТИКА.
P.S.
|Эти дети, у которых я был классным руководителем в 5,6,7,8 классах, были моими первыми учениками в моей учительской карьере, я их запомнил навсегда. Они – на 10 лет младше меня, сегодня им – по 68. Некоторые из них стали очень известными людьми в России и Израиле.

Рецензии

Здравствуйте, Владимир! С удовольствием и интересом прочитал Ваш рассказ. Должен сказать, что к старости пропадает желание читать выдуманные истории, даже если написано хорошим языком и, с художественной точки зрения, правдиво. Не знаю, хорошо это или плохо. ...А математику я люблю. Как и Вы. С уважением, Юрий.

Инструкция

Если вы хотите найти значение функции, используя формулу, подставьте в эту формулу вместо аргумента (х), его допустимые значения, то есть значения, входящие в ее область определения. Для этого допустимых значений данной функции.

Чтобы найти область определения функции, определите, вид она имеет. Если представлена вида у = а/в, то ее областью определения будут являться все значения в, за исключением нуля. Число а является любым . Для нахождения области определения функции подкоренного выражения при условии четного показателя, данное выражение должно быть нуля или равно ему. Находя область определения функции того же выражения, но с нечетным показателем, учитывайте, что х – может быть любым числом в том случае, если подкоренное выражение не дробное. Находя область определения логарифмической функции, руководствуйтесь правилом о том, что выражение, которое стоит под знаком логарифма, должно быть положительной величиной.

Отыскав область определения функции, переходите к ее решению. Например, чтобы функцию : у = 2,5 х – 10 при х = 100, подставьте в данную формулу вместо х число 100. Данная операция будет выглядеть следующим образом: у = 2,5 × 100 – 10; у = 240. Это число и будет искомым значением функции.

Чтобы найти значение функции, используя , отложите в координат на оси ОХ значение аргумента (отметьте точку, соответствующую аргументу). Затем из данной точки проведите перпендикуляр до пересечения его с графиком функции. Из полученной точки пересечения перпендикуляра с графиком функции опустите перпендикуляр на ось ОУ. Основание построенного перпендикуляра будет соответствовать искомому значению функции.

Видео по теме

Связанная статья

Источники:

  • как найти функцию от аргумента по таблице

Еще в школьные годы подробно изучаются функции и строятся их графики. Но, к сожалению, читать график функции и находить ее тип по представленному чертежу практически не учат. В действительности это довольно просто, если помнить основные виды функций.

Инструкция

Если представленным графиком является , которая через начало координат и с осью ОX угол α (который является углом наклона прямой к положительной полуоси), то функция, описывающая такую прямую, будет представлена как y = kx. При этом коэффициент пропорциональности k равен тангенсу угла α.

Если заданная прямая проходит через вторую и четвертую координатные четверти, то k равен 0, и функция возрастает. Пусть представленный график является прямой линией, располагающейся любым образом относительно осей координат. Тогда функцией такого графика будет линейная, которая представлена видом y = kx + b, где переменные y и х стоят в первой , а b и k могут принимать как отрицательные, так и положительные значения или .

Если прямая параллельна прямой с графиком y = kx и отсекает на оси ординат b единиц, тогда уравнение имеет вид x = const, если график параллелен оси абсцисс, то k = 0.

Кривая линия, которая состоит из двух ветвей, симметричных относительно начала координат и располагающихся в разных четвертях, гиперболой. Такой график показывает обратную зависимость переменной y от переменной x и описывается уравнением вида y = k/x, где k не должен быть равен нулю, так как является коэффициентом обратной пропорциональности. При этом, если значение k больше нуля, функция убывает; если же k меньше нуля – возрастает.

Если предложенным графиком является парабола, проходящая через начало координат, ее функция при выполнении условия, что b = с = 0, будет иметь вид y = ax2. Это самый простой случай квадратичной функции. График функции вида y = ax2 + bx + с будет иметь такой же вид, что и простейший случай, однако вершина (точка, где график пересекается с осью ординат) будет находиться не в начале координат. В квадратичной функции, представленной видом y = ax2 + bx + с, значения величин a, b и c – постоянные, при этом a не равно нулю.

Параболой также может являться график степенной функции, выраженной уравнением вида y = xⁿ, только если n является любым четным числом. Если же значение n - нечетное число, такой график степенной функции будет представлен кубической параболой. В случае, если переменная n является любым отрицательным числом, уравнение функции приобретает вид .

Видео по теме

Логарифмической называется функция, которая обратна показательной. Такая функция имеет вид: y = logax, в которой значение a – положительное число (не равное нулю). Внешний вид графика логарифмической функции зависит от значения a.

Вам понадобится

  • - математический справочник;
  • - линейка;
  • - простой карандаш;
  • - тетрадь;
  • - ручка.

Инструкция

Прежде чем приступить к построению графика логарифмической функции обратите внимание на то, что областью определения данной функции есть множество положительных : эта величина R+. Вместе с тем, у логарифмической функции есть область значения, которая представлена действительными .

Внимательно изучите условия . Если а>1, то на графике изображают возрастающую логарифмическую функцию. Доказать такую особенность логарифмической функции несложно. Для примера, возьмите два произвольных положительных значения x1 и x2, причем, x2>x1. Докажите, что loga x2>loga x1 (сделать это можно методом от ).

Предположите, что loga x2≤loga x1. Учитывая то, что показательная функция вида у=ах при а>1 возрастает, неравенство примет следующий вид: aloga x2≤aloga x1. По общеизвестному определению aloga x2=x2, в то как aloga x1=x1. Ввиду этого, неравенство приобретает вид: x2≤x1, а это напрямую противоречит первоначальным допущениям, в согласии с x2>x1. Таким образом, вы пришли к тому, что и требовалось доказать: при а>1 возрастает.

Изобразите график логарифмической функции. График функции y = logax будет проходить через точку (1;0). Если a>1, функция будет возрастающей. Следовательно, если 0

Обратите внимание

Если в задании логарифм будет обозначен lg x, не думайте, что авторы математического пособия допустили ошибку, пропустив букву «о»: перед вами десятичный логарифм.

Полезный совет

Для точности построения графика логарифмической функции рассчитайте, чем будет равен y при разных значениях x (0,5; 2; 4, 8). На основании этих данных поставьте точки и по ним постройте график.

Источники:

  • Определение и основные свойства логарифмической функции
  • график логарифмической функции

Термин решения функции как таковой в математике не используется. Под данной формулировкой следует понимать выполнение некоторых действий над заданной функцией с целью нахождения какой-то определенной характеристики, а также выяснение необходимых данных для построения графика функции.

Инструкция

Можно рассмотреть примерную схему, по которой целесообразно поведение функции и строить ее график.
Найдите область определения функции. Определите, является ли функция четной и нечетной. В случае нахождения нужного ответа, продолжите только на требуемой полуоси. Определите, является ли функция периодической. В случае положительного ответа продолжите исследование только на одном периоде. Найдите точки и определите ее поведение в окрестности этих точек.

Найдите точки пересечения графика функции с осями координат. Найдите , если они есть. Исследуйте с помощью первой производной функцию на экстремумы и интервалы монотонности. Также проведите исследование с помощью второй производной на выпуклость, вогнутость и точки перегиба. Выберите точки для уточнения функции и вычислите в них значения функции. Постройте график функции, учитывая полученные результаты по всем проведенным исследованиям.

На оси 0Х следует выделить характерные точки: точки разрыва, х=0 , нули функции, точки экстремума, точки перегиба. В этих х вычислите значения функции (если они существуют) и на плоскости 0xy отметьте соответствующие точки графика, а также точки, выбранные для уточнения. Линия, проведенная через все построенные точки с учетом интервалов монотонности, направлений выпуклости и , и даст эскиз графика функции.

Так, на конкретном примере функции y=((x^2)+1)/(x-1) проведите исследование с помощью первой производной. Перепишите функцию в виде y=x+1+2/(x-1). Первая производная будет y’=1-2/((x-1)^2).
Найдите критические точки первого рода: y’=0, (x-1)^2=2, в результате получатся две точки: x1=1-sqrt2, x2=1+sqrt2. Отметьте полученные значения на области определения функции (рис. 1).
Определите знак производной на каждом из интервалов. На основе от «+» к «-» и от «-» к «+», получите, что точка максимума функции x1=1-sqrt2, а точка минимума x2=1+sqrt2. Этот же вывод можно сделать и по знаку второй производной.

Совет 5: Как решить дифференциальное уравнение первого порядка

Дифференциальное уравнение первого порядка относится к простейшим дифференциальным уравнениям. Они наиболее легко поддаются исследованию и решению, а в конечном итоге их всегда можно проинтегрировать.

Инструкция

Решение дифференциального первого порядка рассмотрим на примере xy"=y. Вы видите, что оно содержит: х - независимую ; у - зависимую переменную, функцию; y" - первую производную функции.

Не пугайтесь, если в некоторых случаях первого порядка не будет «х» или (и) «у». Главное, чтобы в дифференциальном уравнении обязательно была y" (первая производная), и отсутствовали y"", y"""( высших порядков).

Теперь разделите переменные. Например, в левой части оставьте только переменные содержащие y, а в правой - переменные содержащие x. У вас должно получиться следующее: dyy=dxx.