Уникальная приливная волна. Природное явление приливы и отливы

Приливами и отливами называют периодические повышения и понижения уровня воды в океанах и морях.

Дважды в течение суток с промежутком около 12 часов 25 минут вода у берега океана или открытого моря поднимается и, если нет преград, заливает иногда большие пространства – это прилив. Затем вода понижается и отступает, обнажая дно – это отлив. Почему это происходит? Об этом задумывались еще древние люди, они-то и заметили, что эти явления связаны с Луной. На основную причину приливов и отливов впервые указал И. Ньютон – это притяжение Земли Луной, а точнее, разность между притяжением Луной всей Земли в целом и водной ее оболочки.

Объяснение приливов и отливов теорией Ньютона

Притяжение Земли Луной складывается из притяжения Луной отдельных частиц Земли. Частицы, находящиеся в данный момент ближе к Луне, притягиваются ею сильнее, а более далекие – слабее. Если бы Земля была абсолютно твердой, то это различие в силе притяжения не играло бы никакой роли. Но Земля не является абсолютно твердым телом, поэтому разность сил притяжения частиц, находящихся вблизи поверхности Земли и вблизи ее центра (эту разность называют приливообразующей силой), смещает частицы относительно друг друга, и Земля, прежде всего ее водная оболочка, деформируется.

В результате на той стороне, которая обращена к Луне, и на ее противоположной стороне вода поднимается, образуя приливные выступы, и там накапливается излишек воды. За счет этого уровень воды в других противоположных точках Земли в это время снижается – здесь происходит отлив.

Если бы Земля не вращалась, а Луна оставалась неподвижной, то Земля вместе со своей водной оболочкой всегда сохраняла бы одну и ту же вытянутую форму. Но Землявращается, а Луна движется вокруг Земли примерно за 24 часа 50 минут. С этим же периодом и приливные выступы следуют за Луной и перемещаются по поверхности океанов и морей с востока на Запад. Поскольку таких выступов два, то над каждым пунктом в океане дважды в сутки с интервалом около 12 часов 25 минут проходит приливная волна.

Почему высота приливной волны разная

В открытом океане вода поднимается при прохождении приливной волны незначительно: около 1 м и менее, что остается практически незаметным для мореплавателей. Но у берегов даже такой подъем уровня воды заметен. В бухтах и узких заливах уровень воды поднимается во время приливов гораздо выше, так как берег препятствует движению приливной волны и вода накапливается здесь в течение всего времени между отливом и приливом.

Самый большой прилив (около 18 м) наблюдается в одной из бухт на побережье в Канаде. В России наибольшие приливы (13 м) происходят в Гижигинской и Пенжинской губах Охотского моря. Во внутренних морях (например, в Балтийском или Черном) приливы и отливы почти незаметны, потому что в такие моря не успевают проникнуть массы воды, перемещающиеся вместе с океанской приливной волной. Но все равно в каждом море или даже озере возникают самостоятельные приливные волны с небольшой массой воды. Например, высота приливов в Черном море достигает лишь 10 см.

В одной и той же местности высота прилива бывает различной, так как расстояние от Луны до Земли и наибольшая высота Луны над горизонтом с течением времени изменяются, а это приводит к изменению величины приливообразующих сил.

Приливы и Солнце

На приливы также оказывает действие и Солнце. Но приливные силы Солнца в 2,2 раза меньше приливных сил Луны.

Во время новолуния и полнолуния приливные силы Солнца и Луны действуют в одном направлении – тогда получаются наиболее высокие приливы. Но во время первой и третьей четвертейЛуны приливные силы Солнца и Луны противодействуют, поэтому приливы бывают меньшими.

Приливы в воздушной оболочке Земли и в ее твердом теле

Приливные явления происходят не только в водной, но и в воздушной оболочке Земли. Они называются атмосферными приливами и отливами. Приливы происходят также в твердом теле Земли, поскольку Земля не является абсолютно твердой. Вертикальные колебания поверхности Земли вследствие приливов достигают нескольких десятков сантиметров.

Практическое использование приливов и отливов

Приливная электростанция – это особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды. Колебания уровня воды у берега могут достигать 18 метров.

В 1967 г. во Франции была построена приливная электростанция в устье реки Ранс.

В России c 1968 г. действует экспериментальная ПЭС в Кислой губе на побережье Баренцева моря.

Существуют ПЭС и за рубежом - во Франции, Великобритании, Канаде, Китае, Индии, США и других странах.

Британский фотограф Майкл Мартин (Michael Marten) создал серию оригинальных снимков, фиксирующих побережье Бритаиии в одинаковых ракурсах, но в разное время. Один снимок во время прилива, а второй во время отлива.

Получилось весьма необычно, а положительные отзывы о проекте, буквально вынудили автора заняться выпуском книги. Книга, получившая название «Sea Change», увидела свет в августе этого года и была выпущена на двух языках. На создание своей внушительной серии снимков, у Майкла Мартина (Michael Marten) ушло порядка восьми лет. Время между большой и малой водой составляет в среднем немногим более шести часов. Поэтому, Майклу приходится в каждом месте задерживаться дольше, чем просто время нескольких щелчков затвора.

1. Идея создания серии таких работ вынашивалась автором давно. Он искал, как реализовать на пленке изменения природы, без воздействия человека. И нашел случайно, в одной из приморских шотландских деревушек, где провел весь день и застал время прилива и отлива.

3. Периодические колебания уровня воды (подъемы и спады) в акваториях на Земле называются приливы и отливы.

Самый высокий уровень воды, наблюдаемый за сутки или половину суток во время прилива, называется полной водой, самый низкий уровень во время отлива – малой водой, а момент достижения этих предельных отметок уровня – стоянием (или стадией) соответственно прилива или отлива. Средний уровень моря – условная величина, выше которой расположены отметки уровня во время приливов, а ниже – во время отливов. Это результат осреднения больших рядов срочных наблюдений.

Вертикальные колебания уровня воды во время приливов и отливов сопряжены с горизонтальными перемещениями водных масс по отношению к берегу. Эти процессы осложняются ветровым нагоном, речным стоком и другими факторами. Горизонтальные перемещения водных масс в береговой зоне называют приливными (или приливо-отливными) течениями, тогда как вертикальные колебания уровня воды – приливами и отливами. Все явления, связанные с приливами и отливами, характеризуются периодичностью. Приливные течения периодически меняют направление на противоположное, в отличии от них океанические течения, движущиеся непрерывно и однонаправленно, обусловлены общей циркуляцией атмосферы и охватывают большие пространства открытого океана.

4. Приливы и отливы циклически чередуются в соответствии с изменяющейся астрономической, гидрологической и метеорологической обстановкой. Последовательность фаз приливов и отливов определяется двумя максимумами и двумя минимумами в суточном ходе.

5. Хотя Солнце играет существенную роль в приливо-отливных процессах, решающим фактором их развития служит сила гравитационного притяжения Луны. Степень воздействия приливообразующих сил на каждую частицу воды, независимо от ее местоположения на земной поверхности, определяется законом всемирного тяготения Ньютона.
Этот закон гласит, что две материальные частицы притягиваются друг к другу с силой, прямо пропорциональной произведению масс обеих частиц и обратно пропорциональной квадрату расстояния между ними. При этом подразумевается, что чем более масса тел, тем больше возникающая между ними сила взаимного притяжения (при одинаковой плотности меньшее тело создаст меньшее притяжение, чем большее).

6. Закон также означает, что чем больше расстояние между двумя телами, тем меньше между ними притяжение. Поскольку эта сила обратно пропорциональна квадрату расстояния между двумя телами, в определении величины приливообразующей силы фактор расстояния играет значительно б?льшую роль, чем массы тел.

Гравитационное притяжение Земли, действующее на Луну и удерживающее ее на околоземной орбите, противоположно силе притяжения Земли Луной, которая стремится сместить Землю по направлению к Луне и «приподнимает» все объекты, находящиеся на Земле, в направлении Луны.

Точка земной поверхности, расположенная непосредственно под Луной, удалена всего на 6400 км от центра Земли и в среднем на 386 063 км от центра Луны. Кроме того, масса Земли в 81,3 раза больше массы Луны. Таким образом, в этой точке земной поверхности притяжение Земли, действующее на любой объект, приблизительно в 300 тыс. раз больше притяжения Луны.

7. Распространено представление, что вода на Земле, находящаяся прямо под Луной, поднимается в направлении Луны, что приводит к оттоку воды из других мест земной поверхности, однако, поскольку притяжение Луны столь мало в сравнении с притяжением Земли, его было бы недостаточно, чтобы поднять столь огромный вес.
Тем не менее океаны, моря и большие озера на Земле, будучи крупными жидкими телами, свободны перемещаться под действием силы бокового смещения, и любая слабая тенденция к сдвигу по горизонтали приводит их в движение. Все воды, не находящиеся непосредственно под Луной, подчиняются действию составляющей силы притяжения Луны, направленной тангенциально (касательно) к земной поверхности, как и ее составляющей, направленной вовне, и подвергаются горизонтальному смещению относительно твердой земной коры.

В результате возникает течение воды из прилегающих районов земной поверхности по направлению к месту, находящемуся под Луной. Результирующее скопление воды в точке под Луной образует там прилив. Собственно приливная волна в открытом океане имеет высоту лишь 30–60 см, но она значительно увеличивается при подходе к берегам материков или островов.
За счет перемещения воды из соседних районов в сторону точки под Луной происходят соответствующие отливы воды в двух других точках, удаленных от нее на расстояние, равное четверти окружности Земли. Интересно отметить, что понижение уровня океана в этих двух точках сопровождается повышением уровня моря не только на стороне Земли, обращенной к Луне, но и на противоположной стороне.

8. Этот факт тоже объясняется законом Ньютона. Два или несколько объектов, расположенные на разных расстояниях от одного и того же источника тяготения и подвергающиеся, следовательно, ускорению силы тяжести разной величины, перемещаются относительно друг друга, поскольку ближайший к центру тяготения объект сильнее всего притягивается к нему.

Вода в подлунной точке испытывает более сильное притяжение к Луне, чем Земля под ней, но Земля, в свою очередь, сильнее притягивается к Луне, чем вода, на противоположной стороне планеты. Таким образом, возникает приливная волна, которая на обращенной к Луне стороне Земли называется прямой, а на противоположной – обратной. Первая из них всего на 5% выше второй.

9. Благодаря вращению Луны по орбите вокруг Земли между двумя последовательными приливами или двумя отливами в данном месте проходит примерно 12 ч 25 мин. Интервал между кульминациями последовательных прилива и отлива ок. 6 ч 12 мин. Период продолжительностью 24 ч 50 мин между двумя последовательными приливами называется приливными (или лунными) сутками.

10. Неравенства величин прилива. Приливо-отливные процессы очень сложны, поэтому, чтобы разобраться в них, необходимо принимать во внимание многие факторы. В любом случае главные особенности будут определяться:
1) стадией развития прилива относительно прохождения Луны;
2) амплитудой прилива и
3) типом приливных колебаний, или формой кривой хода уровня воды.
Многочисленные вариации в направлении и величине приливообразующих сил порождают разницу в величинах утренних и вечерних приливов в данном порту, а также между одними и теми же приливами в разных портах. Эти различия называются неравенствами величин прилива.

Полусуточный эффект. Обычно в течение суток благодаря основной приливообразующей силе – вращению Земли вокруг своей оси – образуются два полных приливных цикла.

11. Если смотреть со стороны Северного полюса эклиптики, то очевидно, что Луна вращается вокруг Земли в том же направлении, в каком Земля вращается вокруг своей оси, – против часовой стрелки. При каждом следующем обороте данная точка земной поверхности вновь занимает позицию непосредственно под Луной несколько позже, чем при предыдущем обороте. По этой причине и приливы и отливы каждый день запаздывают приблизительно на 50 мин. Эта величина называется лунным запаздыванием.

12. Полумесячное неравенство. Этому основному типу вариаций присуща периодичность примерно в 143/4 суток, что связано с вращением Луны вокруг Земли и прохождением ею последовательных фаз, в частности сизигий (новолуний и полнолуний), т.е. моментов, когда Солнце, Земля и Луна располагаются на одной прямой.

До сих пор мы касались только приливообразующего воздействия Луны. Гравитационное поле Солнца также действует на приливы, однако, хотя масса Солнца намного больше массы Луны, расстояние от Земли до Солнца настолько превосходит расстояние до Луны, что приливообразующая сила Солнца составляет менее половины приливообразующей силы Луны.

13. Однако, когда Солнце и Луна находятся на одной прямой как по одну сторону от Земли, так и по разные (в новолуние или полнолуние), силы их притяжения складываются, действуя вдоль одной оси, и происходит наложение солнечного прилива на лунный.

14. Подобным же образом притяжение Солнца усиливает отлив, вызванный воздействием Луны. В результате приливы становятся выше, а отливы ниже, чем если бы они были вызваны только притяжением Луны. Такие приливы называются сизигийными.

15. Когда векторы силы притяжения Солнца и Луны взаимно перпендикулярны (во время квадратур, т.е. когда Луна находится в первой или последней четверти), их приливообразующие силы противодействуют, поскольку прилив, вызванный притяжением Солнца, накладывается на отлив, вызванный Луной.

16. В таких условиях приливы не столь высоки, а отливы – не столь низки, как если бы они были обусловлены только силой притяжения Луны. Такие промежуточные приливы и отливы называются квадратурными.

17. Диапазон отметок полных и малых вод в этом случае сокращается приблизительно в три раза по сравнению с сизигийным приливом.

18. Лунное параллактическое неравенство. Период колебаний высот приливов, возникающий за счет лунного параллакса, составляет 271/2 суток. Причина этого неравенства состоит в изменении расстояния Луны от Земли в процессе вращения последней. Из-за эллиптической формы лунной орбиты приливообразующая сила Луны в перигее на 40% выше, чем в апогее.

Суточное неравенство. Период этого неравенства составляет 24 ч 50 мин. Причины его возникновения – вращение Земли вокруг своей оси и изменение склонения Луны. Когда Луна находится вблизи небесного экватора, два прилива в данные сутки (а также два отлива) слабо различаются, и высоты утренних и вечерних полных и малых вод весьма близки. Однако с увеличением северного или южного склонения Луны утренние и вечерние приливы одного и того же типа различаются по высоте, и, когда Луна достигает наибольшего северного или южного склонения, эта разница максимальна.

19. Известны также тропические приливы, называемые так из-за того, что Луна находится почти над Северным или Южным тропиками.

Суточное неравенство существенно не влияет на высоты двух последовательных отливов в Атлантическом океане, и даже его воздействие на высоты приливов мало по сравнению с общей амплитудой колебаний. Однако в Тихом океане суточная неравномерность проявляется в уровнях отливов втрое сильнее, чем в уровнях приливов.

Полугодовое неравенство. Его причиной является обращение Земли вокруг Солнца и соответствующее изменение склонения Солнца. Дважды в год в течение нескольких суток во время равноденствий Солнце находится близ небесного экватора, т.е. его склонение близко к 0. Луна также располагается вблизи небесного экватора приблизительно в течение суток каждые полмесяца. Таким образом, во время равноденствий существуют периоды, когда склонения и Солнца и Луны приблизительно равны 0. Суммарный приливообразующий эффект притяжения этих двух тел в такие моменты наиболее заметно проявляется в районах, расположенных вблизи земного экватора. Если в то же самое время Луна находится в фазе новолуния или полнолуния, возникают т.н. равноденственные сизигийные приливы.

20. Солнечное параллактическое неравенство. Период проявления этого неравенства составляет один год. Его причиной служит изменение расстояния от Земли до Солнца в процессе орбитального движения Земли. Один раз за каждый оборот вокруг Земли Луна находится на кратчайшем от нее расстоянии в перигее. Один раз в год, примерно 2 января, Земля, двигаясь по своей орбите, также достигает точки наибольшего приближения к Солнцу (перигелия). Когда эти два момента наибольшего сближения совпадают, вызывая наибольшую суммарную приливообразующую силу, можно ожидать более высоких уровней приливов и более низких уровней отливов. Подобно этому, если прохождение афелия совпадает с апогеем, возникают менее высокие приливы и менее глубокие отливы.

21. Наибольшие амплитуды приливов. Самый высокий в мире прилив формируется в условиях сильного течения в бухте Минас в заливе Фанди. Приливные колебания здесь характеризуются нормальным ходом с полусуточным периодом. Уровень воды во время прилива часто поднимается за шесть часов более чем на 12 м, а затем в течение последующих шести часов понижается на ту же величину. Когда воздействие сизигийного прилива, положение Луны в перигее и максимальное склонение Луны приходятся на одни сутки, уровень прилива может достигать 15 м. Такая исключительно большая амплитуда приливо-отливных колебаний отчасти обусловлена воронкообразной формой залива Фанди, где глубины уменьшаются, а берега сближаются по направлению к вершине залива.Причины возникновения приливов, бывшие предметом постоянного изучения в течение многих столетий, относятся к тем проблемам, которые породили много противоречивых теорий даже в сравнительно недавнее время

22. Ч.Дарвин писал в 1911 г.: “Нет необходимости искать античную литературу ради гротесковых теорий приливов”. Однако морякам удается измерять их высоту и использовать возможности приливов, не имея представления о действительных причинах их возникновения.

Думаю что и нам можно особенно не заморачиваться по поводу причин происхождения приливов. На основании многолетних наблюдений для любой точки акватории земли рассчитываются специальные таблицы в которых указывается время высокой и низкой воды на каждый день. Планирую свою поездку например в Египет, который как раз славится своими не глубокими лагунами, по пробуйте заранее подгадать так чтобы полная вода приходилась на первую половину дня, что позволит большую часть светлого времени полноценно кататься.
Еще один вопрос связанный с приливами интересный для кайтера, это взаимосвязь ветра и колебания уровня воды.

23. Народная примета утверждает что на прилив ветер усиливается а на отлив наоборот скисает.
Более понятно влияние ветра на приливо-отливные явления. Ветер с моря нагоняет воду в сторону берега, высота прилива увеличивается сверх обычной, и при отливе уровень воды тоже превосходит средний. Напротив, при ветре, дующем с суши, вода сгоняется от берега, и уровень моря понижается.

24. Второй механизм действует за счет повышения атмосферного давления над обширной акваторией, происходит понижение уровня воды, так как добавляется наложенный вес атмосферы. Когда атмосферное давление возрастает на 25 мм рт. ст., уровень воды понижается приблизительно на 33 см. Зона высокого давления или антициклон обычно называют хорошей погодой, но только не для кайтера. В центре антициклона штиль. Понижение атмосферного давления вызывает соответствующее повышение уровня воды. Следовательно, резкое падение атмосферного давления в сочетании с ветром ураганной силы способно вызвать заметный подъем уровня воды. Подобные волны, хотя и называются приливными, на самом деле не связаны с воздействием приливообразующих сил и не обладают периодичностью, характерной для приливо-отливных явлений.

Но вполне возможно, что и отливы могут оказывать влияние на ветер, к примеру понижение уровня воды в прибрежных лагунах, ведет к большему прогреву воды, и как следствие к уменьшению разницы температур между холодным морем и нагретой сушей что ослабляет бризовой эффект.

Приливом и отливом называется такое периодическое колебание уровня океана или моря, которое происходит от притяжения Луны и Солнца. Явление заключается в следующем: уровень воды постепенно поднимается, что называется приливом, достигает наивысшего положения, называемого полной водой. После того уровень начинает понижаться, что называется отливом, и через 6 час. 12,5 мин. (приблизительно) достигает наиболее низкого положения, называемого малой водой. Затем уровень снова начинает повышаться, и еще через 6 час. 12,5 мин. (приблизительно) наступает опять полная вода.

Таким образом, период явления равен 12 час. 25 мин. (приблизительно), и каждые 24—25 час. бывает два прилива и два отлива, две полные воды и две малые.

Расстояние от вертикали между уровнями последовательных полной и малой вод есть амплитуда прилива.

Если производить в том же месте наблюдения прилива в течение месяца, то окажется, что изо дня в день полная и малая воды изменяют свои положения. Два раза в месяц, в сизигии (полнолуние и новолуние), уровни полной и малой воды располагаются всего далее друг от друга, и тогда амплитуда прилива наибольшая, это случается каждые 14 дней (приблизительно). После момента сизигийных полных и малых вод уровни последующих полных и малых вод начинают приближаться друг к другу; первые располагаются все ниже и ниже, а вторые — все выше и выше, и около времени квадратур (первая и последняя четверти) амплитуда прилива достигает наименьшей величины, что случается тоже каждые 14 дней (приблизительно).

Наблюдая моменты полных вод, нетрудно заметить, что они бывают около времени верхнего и нижнего прохождений Луны через меридиан места, а малые — приблизительно посередине между этими моментами (т. е. когда Луна находится около первого вертикала). При этом каждая последующая полная и малая воды опаздывают относительно момента предшествовавшей в среднем на 12,5 мин.; таким образом, за сутки накопится около 50 мим. опоздания явления, т. е. столько же, как и опоздание прохождения Луны через верхнюю часть меридиана места.

В свою очередь наибольшие амплитуды бывают около времени фаз Луны, называемых сизигиями, а наименьшие — около времени фаз Луны, называемых квадратурами.

Все эти обстоятельства были подмечены еще до нашей эры и тогда же привели к заключению, что явление приливов связано с Луной. Прошло, однако, более полуторы тысячи лет, пока нашли и сумели выразить научным образом зависимость между явлением приливов и Луной, это открытие было сделано Ньютоном на основании впервые им высказанных законов всемирного тяготения.

Наблюдая внимательно приливы или изучая таблицы тщательно произведенных наблюдений, нетрудно заметить еще некоторые особенности, представляющие уклонения от идеально правильного хода явления; но так как эти уклонения правильно повторяются, то они тоже суть характерные признаки явления.

Моменты полных и малых вод всегда опаздывают относительно времени прохождения Луны через меридиан. Промежуток времени между верхним или нижним прохождениями Луны через меридиан и моментами полной воды называется лунным промежутком, этот промежуток изменяется в некоторых пределах; среднее из многих лунных промежутков во время сизигий называется прикладным часом.

Лунные промежутки бывают меньше средних между новолунием л полнолунием и следующими за ними квадратурами. Лунные промежутки бывают больше средних между квадратура;ми и следующими за ними сизигиями.

Промежутки времени между полной и малой водами, а также малой и полной водами в действительности никогда не бывают равны между собой, но различаются иногда до 2 час. времени. Так же точно и промежутки времени между сизигийными и квадратурными приливами неравны между собой.

При большом удалении Луны от экватора, т. е. когда склонение Луны велико, все местные отклонения явления от его нормального хода увеличиваются в размерах.

Все эти особенности явления подтверждают преобладающее значение Луны в возбуждении явления приливов.

Изучение явления приливов

Явление приливов на берегах морей, где колебания уровня, вызываемые приливами, сколько-нибудь заметны, своей правильной повторяемостью должны были неминуемо обратить на себя внимание береговых жителей, тем более, что последние всегда заняты рыболовством, для которого правильное колебание уровня имеет большое практическое значение. Таким образом, существование периодических колебаний уровня было известно, конечно в глубокой древности.

Геродот (484—428 гг. до н. э.) был первый, который упоминает о явлении приливов в своих трудах, именно о приливах в Красном море. В Средиземном море приливы очень невелики, и, хотя европейская цивилизация « зародилась на берегах этого моря, вполне понятно, что явление приливов стало изучаться только после плаваний греков за пределы Гибралтара.

Первые наблюдения и выводы из них были сделаны Пифеем (325 г. до н. э.) из греческой колонии Массилия (нынешний Марсель), ученым мореплавателем, бывавшем не только в Англии, но и далее на север. Наблюдая приливы у берегов Англии, i де они очень велики я отличаются правильностью, Пифей был первый, который заметил зависимость между явлением приливов и Луной, а именно, что полные воды бывают около времени прохождений Луны через меридиан, а малые — посередине между ними; и второе, что амплитуда пр.илявов изменяется в течение полумесяца вместе с фазами Луны; очевидно, для получения таких выводов надо было наблюдать приливы и измерять амплитуды их.

Посидоний (130—50 гг. до н. э.), греческий ученый, считался знатоком явления приливов и даже сделал попытку выразить числом влияние Луны на приливы. Его описание приливов в Кадиксе замечательно обстоятельно, причем оп указывает даже на существование разности амплитуд приливов во время равноденствий и солнцестояний.

Взгляды Галилея (1564—1642 гг.) на приливы не были особенно ясны. Кеплер (1571—1630 гг.) внес более серьезный вклад в дело изучения явления. Он указал, что, разбирая приливы, надо принимать во внимание не солнечные сутки, а лунные. Он же упоминает впервые о 19-летнем периоде приливов. В общем до открытия законов всемирного тяготения представления о причинах приливов не могли быть ясны.

Ньютон (1642—1727 гг.) на основании законов всемирного тяготения изложил свою теорию приливов, так называемую теорию равновесия, пользуясь которой он дал первое объяснение главных особенностей приливов, как, например, суточного неравенства, и первое вычисление величины сил, производящих приливы; все последующие труды основаны на работе Ньютона.

Дальнейшее движение в изучении приливов принадлежит Д. Беряулли (1700— 1782 гг.), который развил теорию равновесия Ньютона и первый приспособил ее к предсказанию приливов. Его работа была большим усовершенствованием теории равновесия вообще.

Маклорен (1698—1746 гг.) доказал те стороны теории равновесия, которые Ньютон дал без подтверждения; а именно он окончательно подтвердил, что под влиянием притяжения Луны однородная сфера должна принимать вид эллипсоида вращения.

Лаплас (1749—1827 гг.) первый приложил к изучению приливов новый взгляд, разбирая явление не как результат статического равновесия, а как род колебательного движения частиц воды, возбуждаемого притяжением каждой из них Солнцем и Луной. Пользуясь предпринятыми по его настоянию наблюдениями в Бресте (с 1807 по 1822 г.), он проверил выводы своей теории, впервые показавшей, каким способом можно выразить аналитически какое-либо периодическое явление. Работы Лапласа легли в основание всех современных приемов изучения явления приливов.

Лёббок (1803—1865 гг.) много сделал для применения теории к практике предсказания приливов и дал для этого прекрасные примеры. Он же высказал мысль, о построении карт распространения приливов, на что уже указывал Юнг, и хотя последний и не построил подобных карт, но ему принадлежит термин «котидальная линия», т. е. линия, соединяющая местность с одновременными полными водами.

Уевель (1794—1866 гг.) много работал по изучению приливов, и ему обязана наука многими одновременными наблюдениями в большом числе мест в Атлантическом океане. Он же построил и первые карты котидальных линий для большей части Мирового океана. Однако к концу своей деятельности он справедливо высказал сомнение о правильном представлении явления такими картами для открытого океана, оставляя их для прибрежных вод, где прилив распространяется по законам волн в водах малой глубины."

Эри (1801—1892 гг.) в своих трудах, имеющих отношение к приливам, разобрал случаи движения волн в каналах малой глубины сравнительно с размерами волн. Ои объяснил и показал, что трение действительно может произвести опоздание в наступлении полной воды сравнительно с моментом прохождения Луны через меридиан, как это почти везде и наблюдается; обстоятельство, которое предшествовавшими теориями не объяснялось. Он же приложил свою теорию ко многим случаям на практике и показал, что она объясняет такие стороны явления приливов у берегов, которые остались до тех пор не ясными (явление бора, смена приливных течений).

В. Томсон, лорд Кельвин (1824—1908 гг.) очень много сделал для практической стороны вопроса предсказания приливов. Он применил прием Лапласа:—выражение прилива с помощью особых рядов — и развил его в гармонический анализ кривой колебания уровня при приливе. Им был построен особый прибор (в 1878 г.) — гармонический анализатор, решавший задачу механически. При помощи его можно было из кривой прилива за годовой период в каком-либо месте вывести коэффициенты прилива, подобно тому, как из наблюдений девиации получаются ее коэффициенты. Пользуясь этими коэффициентами, можно построить или вычислить кривую прилива для того же мест? на год вперед. Для облегчения зыполнения этой задачи Томсон построил другой прибор — приливопредсказатель (1876 г.).

Г. Дарвину (1845—1912 гг.) принадлежит разработка важных теоретических вопросов приливов, между прочим, он высказал гипотезу о возникновении Луны, как следствия приливов в еще жидкой массе Земли. Он же разработал вопрос о влиянии прилива на замедление вращения Земли на оси. Кроме того, Дарвин много работал над улучшением приемов гармонического анализа и дал удобные для выполнения его приемы. Его статьи о приливах в «Encyclopedia Britannica» представляют образцовые изложения вопроса, и им же написано одно из лучших популярных описаний состояния теории приливов под заглавием.Tides and Kindred phenomena in the Solar system, 1911.

P. Гарриссв (1894—1904 и 1911 гг.) посвятил приливам громадный труд, где он сделал свод всего достигнутого его предшественниками и изложил свою гипотезу распространения прилива в Мировом океане, основанную на применении стоячих волн (сейш) к явлению прилива.

В нескольких местах на Земле местные ландшафты и приливы становятся причиной феномена, который называется приливной волной. Она формируется, когда огромные массы воды попадают в узкое русло реки.

9-метровая приливная волна на реке Цяньтан в Китае признана уникальным природным явлением. Во время прилива миллионы кубометров воды, огибая небольшие островки, движутся против течения этой реки, завораживая взгляды наблюдателей. Приливные волны есть и в других местах, таких, Аляска, Бразилия (река Амазонка) и самая большая по протяжённости река в Великобритании - Северн.

Момент столкновения волны с волнорезами на берегу является особенно зрелищным. Но наблюдать за этим явлением крайне опасно, и высокая волна периодически становится причиной гибели людей, наблюдающих за ней. 22 августа 2013. (Фото ChinaFotoPress | ChinaFotoPress via Getty Images):

Иногда цунами ошибочно называют «приливной волной», но в реальности оно не имеет ничего общего с приливами.

Но экстремалов этим не напугать. Провинция Чжэцзян на востоке Китая, 31 августа 2011. (Фото AP Photo):

Наиболее интересно поведение волны в заливах и в «закрытых» морях, которые сообщаются с океаном нешироким проливом. В таком море возникает собственная приливная волна – из-за того же искривления поверхности Земли. Но такая волна не успевает образоваться – ведь чем слабее сила, тем дольше она должна действовать, чтобы создать большую амплитуду. Из-за недостаточно больших размеров моря, прилив успевает пройти с одного берега до другого, не нарастивши существенной амплитуды.

В эти моря заходит приливная волна из океана. Если глубина оказывается меньше – быстро повышается высота и спадает скорость волны. Также движение волн сильно зависит от формы береговой линии. Заливе Фанди, где наблюдаются самые высокие приливы, широкий у основания и резко сужается к материку. Вода оказывается стесненной берегом, по этой причине также ее уровень повышается. В Белом море, наоборот, приливная волна, рассеивается на берегах и островах вытянутого моря.

Интересное явление происходит, когда прилив подходит к устью реки, впадающей в океан. Когда он попадает в узкий, да еще и мелкий водоем, амплитуда приливной волны резко возрастает и вверх по течению движется высокая водяная стена. Это явление называется бора.

Приливная волна на реке Цяньтан в Китае, 31 августа 2011. Около 20 человек получили тогда ранения. (Фото Reuters | China Daily):

Против течения: приливная волна в Анкориджа, Аляска, 5 июня 2012. (Фото AP Photo | Ron Barta):

Байдарочники ловят приливную волну, Анкориджа, Аляска, 5 июня 2012. (Фото AP Photo | Ron Barta):

На приливной волне в каноэ в северной Бразилии, 12 марта 2001. (Фото AP Photo | Paulo Santos):

Серферы на реке Северн в графстве Глостершир, Англия, 2 марта 2010. Это самая большая по протяжённости река в Великобритании. Длина течения реки составляет 354 километра. (Фото Matt Cardy | Getty Images):

Но вернемся к экстремалам в Китай. Приливная волна на реке Цяньтан, 22 августа 2013. (Фото China FotoPress | ChinaFotoPress via Getty Images):

Народу нравится. Приливная волна на реке Цяньтан, 24 августа 2013. (Фото Reuters | Stringer):

(Фото STR | AFP | Getty Images):

Приливная волна Амазонки называется поророка, она особенно мощна во время весеннего половодья. В это время года, хорошие серферы могут катится на ней целых шесть минут. Скорость волны поророка 35 км в час, высота может достигать шести метров. Она с корнем вырывает деревья и переворачивает суда. Ширина приливной волны иногда достигает 16-ти км. Иногда приливную волну еще называют гремящая вода.

Видео: серфинг на Амазонке.

Также приливные волны возникают и в других местах. Например на атлантическом побережье Франции приливную волну называют маскаре, в Малайзии бенак.

Еще можно отметить приливные волны на реке Птикодьяк в Канаде и в заливе Кука, высота этих боров не превышает двух метров.


Гравитационное влияние Солнца и Луны сказывается на всех оболочках Земли - воздушной, водной и земной, несмотря на огромные расстояния, отделяющие их от Земли. Отметим что само понятие гравитации как физического фактора стало известно лишь к середине XVII в" когда этот термин был введен великим физиком Исааком Ньютоном. Затем, после многочисленных работ ученых разных стран, выполненных в XIX и ЛХ вв., стали ясными физические основы гравитационного влияния на Землю Луны и Солнца. Это влияние, как прямое так и косвенное, очень многообразно . Самыми значительными из них являются океанические приливы, разные по своим масштабам и амплитудам в различных географических пунктах Земли [Максимов И. В. и др., 1970; Картер С., 1977; Марчук Г. И Каган Б. А., 1983; Bouteloup J., 1979]. На протяжении тысячелетии люди наблюдали морские приливы и отливы и убедились в их тесной связи с фазами Луны и в сопряженности изменении в окружающей среде с временем наступления этих фаз Многовековые наблюдения привели ученых к выводу о важном значении Луны для природных процессов и о ее существенном влиянии на человека: через озоновый слой, геомагнитную активность, осадки . "Наше исследование Луны, наше будущее, возможно, в значительной мере зависят от более глубокого понимания приливообразующего действия Луны на Землю" [Картер С., 1977].

Наиболее интересным моментом во всей проблеме приливов является тот факт, что грандиозный по своим масштабам процесс, охватывающий всю Землю, все ее оболочки, вызывается ничтожными по своей величине колебаниями силы тяжести (рис. 4). Достаточно сказать, что в результате лунно-солнечного притяжения масса тела, например, в одну тонну, изменяется всего на 0,2 г. О величине изменения силы тяжести можно судить по следующим цифрам: ускорение силы тяжести на Земле равно 982,04 см/с^ (g= 982,04 гал), а максимальное изменение за счет влияния Луны и Солнца составляет всего 240,28 мкгал (или 0,24 млгал), т. е. 100-тысячные доли процента от g. Причем из них 164,52 мгал приходится на действие Луны и 75,76 мгал - на долю гравитационного влияния Солнца. Эти ничтожные по своей величине гравитационные силы оказываются достаточными, чтобы приводить в непрерывное движение миллиарды тонн воды, земной тверди и воздушных масс.

Приливные явления возникают за счет совместного гравитационного действия Луны и Солнца на Землю. Наибольшее влияние оказывает Луна, которая несмотря на свои несоизмеримо малые размеры по сравнению с Солнцем, находится на более близком к Земле расстоянии (356000 км), чем Солнце (150-10^ км). Морские и океанические приливы и отливы, повторяющиеся 2 раза в сутки, легко заметны наблюдателю по периодическому повышению и понижению уровня воды в прибрежных районах. Взаимное расположение Земли, Луны и Солнца в космическом пространстве все время изменяется и поэтому величина приливов также изменяется. Ее определяют с помощью приборов, измеряющих высоту поверхности воды во время приливов.

Приливы достигают максимума в новолуние и полнолуние (сизигийные приливы, от латинского слова "сизигий" - соединение), когда Луна и Солнце оказываются на одной прямой линии с Землей. Минимальные приливы, называемые квадратурными (от латинского слова "квадратура"-четверть), наблюдаются в фазе первой и последней четверти Луны, когда разница астродолгот Луны и Солнца составляет 90°, т. е. они располагаются под прямым углом друг к другу (рис. 5).

Менее известны земные и атмосферные приливы [Мельхиор П., 1968; Чепмен С., Линдзен P., 1972], которые не так очевидны, как океанические и морские, но они также имеют глобальные масштабы. Так, в верхней мантии Земли, в самой внешней оболочке земной коры, сила притяжения Луны и Солнца вызывает периодические подъемы и опускания поверхности, наблюдаемые с помощью гравиметров, измеряющих локальные изменения силы тяжести. Под влиянием Луны поверхность Земли поднимается максимально на 35,6 см и опускается на 17,8 см, в то время как Солнце вызывает колебания поверхности соответственно вверх до 16,4 см и вниз до 8,2 см. Общий размер лунно-солнечных колебаний земной поверхности составляет 78 см: под влиянием Луны на 53,4 см и Солнца24,6 см.

Таково своеобразное "дыхание" Земли - движение ее поверхности под влиянием гравитационных сил. Как отмечалось выше, эти грандиозные по масштабам подвижки водных и земных слоев происходят под влиянием ничтожных по величине гравитационных воздействий, составляющих миллионные доли от модуля земной силы тяжести. Непрерывное движение земной поверхности приводит к большим изменениям в структуре земной коры, скорости вращения Земли вокруг своей оси, параметров орбитального движения и других геофизических явлений (в частности, к дрейфу континентов, сдвигу океанических плит, увеличению разломов и даже частоты происходящих землетрясений) .

В атмосфере под влиянием гравитационного воздействия Луны и Солнца также происходят большие по своим масштабам изменения, усиленные еще дополнительно периодическим нагревом ее от Солнца. Показателем атмосферных приливов служит изменение давления воздуха, измеряемое барометром. Следует помнить, что приливная сила, возникшая от гравитационного воздействия Луны и Солнца, в любой точке каждой из оболочек Земли непрерывно изменяется из-за вращения нашей планеты и ряда других факторов. Однако сама характерная волна в течение суток сохраняется, только трансформируясь по форме и амплитуде в зависимости от географической широты места. В структуре этой волны имеются две основные составляющие-лунная и солнечная, в которых с помощью метода гармонического анализа выявляется несколько компонент: долгопериодные (недельные и месячные) и короткопериодные (суточные, полусуточные и третьсуточные) [Марчук Г. И., Каган Б. А., 1983].

Для последующего медико-биологического анализа влияния Луны важна не только вся тонкая структура спектра лунносолнечных волн и полуволн, но главным образом наличие коротко- и долгопериодных составляющих, которые определяют биоритмику живых организмов. Например, при анализе циркадианной биоритмики исследователям важно знать, что в приливных явлениях имеется доминирующая полусуточная волна (Ма) с периодом, равным 12 ч 25 мин, соответствующая полусуточному приливу, и солнечная приливная волна (82) с периодом в 12 ч 00 мин. Долгопериодные составляющие-месячная и двухнедельная-имеют период соответственно 27,555 и 13,661 сут. Эти периоды важны, так как проявляются в биоритмике самых различных процессов в организме, указывая тем самым на возможную роль гравитационных приливообразующих сил как внешнего синхронизатора [Браун Ф" 1964, 1977; ХауэншилдК., 1964; Василик П. В., Галицкий А. К., 1977, 1979; Чернышев В. Б., 1980; Нейман Д" 1984; Garzino S., 1982a; Brown F. A., 1983].

Приливы, связанные с действием гравитационных сил Луны и Солнца, отличаются чрезвычайным разнообразием в разных географических точках Земли, что зависит от многих физических факторов. Но при рассмотрении их суточной динамики можно выделить 3 основных типа - суточные, полусуточные и смешанные, или комбинированные [Марчук Г. И" Каган А. Б., 1983; Нейман Д" 1984].

Суточные приливы происходят один раз в сутки и обусловлены действием двух составляющих приливообразующей силы с периодами в 25,8 и 23,9 ч. В ряде мест земного шара (например, у берегов Мексики) в динамике суточных приливов каждые 13–14 дней (в среднем 13,66 дня) наблюдается сдвиг фазы на 180°, коррелирующий с 1/2 цикла склонения Луны (напомним, что тропический лунный месяц равен 27,32 дня), т. е. с пересечением Луной каждые 13,66 дней плоскости небесного экватора. Здесь зримо видно, как движение нашего спутника в пространстве вызывает регулярные изменения геофизических процессов.

Полусуточные приливы отмечаются 2 раза в сутки с периодом в 12,4 ч. Амплитуда их варьирует в течение синодического месяца (29,53 дня) от максимального значения в полнолуние и новолуние до минимальных в различные четверти Луны. Изменения амплитуд составляют полусинодический цикл соответственно смене лунных фаз. Сизигийные приливы повторяются каждые 14–15 дней (в среднем 14,76 дня). Смешанные (комбинированные) приливы имеют различную амплитуду подъема воды и отличаются неравенством периодов, - они наблюдаются у побережья Тихого океана, Австралии, Аравийского полуострова. Мы специально подробно останавливаемся на типах приливных ритмов, поскольку в биологии подразделяются приливные и лунные ритмы [Чернышев В. Б. 1980; Нейман Д., 1984]. Как указывают цитируемые авторы, имеются эндогенные ритмы с пиками активности, повторяющимися каждые 12,4 ч. Они поддаются захватыванию приливными циклами ("околоприливные" ритмы) и большинство из них не отличается устойчивостью и точностью, присущими циркадианным ритмам [Нейман Д., 1984, с. 12].

Кроме того, отмечается, что некоторые виды могут обладать ритмом с удвоенным приливным периодом, равным 24,8 ч. Это обусловлено адаптацией к местному профилю приливов. Исследования показывают, что восприятие приливного фактора во время ежедневной чувствительной фазы связано с циркадианным ритмом и зависит от него. Приливные ритмы могут быть также модулированы суточными циклами освещенности и полумесячными приливными составляющими, что приводит к сложной ритмике у конкретных видов, живущих в определенных экологических условиях. Одновременно с этим у разных видов наблюдаются лунные ритмы, связанные с непосредственным действием лунного света и сменой лунных фаз (сизигийные и синодические ритмы). Эти ритмы прослеживаются у водных и наземных видов независимо от приливных циклов [Чернышев В. Б., 1980; Нейман Д" 1984]; их особенности рассмотрены ниже.