Теория принятия оптимальных решений. Лекция. Основы теории принятия решений

Теория принятия решений

Тео́рия приня́тия реше́ний - область исследования, вовлекающая понятия и методы математики , статистики , экономики , менеджмента и психологии с целью изучения закономерностей выбора людьми путей решения разного рода задач, а также способов поиска наиболее выгодных из возможных решений.

Принятие решения - это процесс рационального или иррационального выбора альтернатив , имеющий целью достижение осознаваемого результата. Различают нормативную теорию , которая описывает рациональный процесс принятия решения и дескриптивную теорию , описывающую практику принятия решений.

Процесс выбора альтернатив

Рациональный выбор альтернатив состоит из следующих этапов:

  1. Ситуационный анализ;
  2. Идентификация проблемы и постановка цели;
  3. Поиск необходимой информации;
  4. Формирование альтернатив;
  5. Формирование критериев для оценки альтернатив;
  6. Проведение оценки;
  7. Выбор наилучшей альтернативы;
  8. Внедрение (исполнение);
  9. Разработка критериев (индикаторов) для мониторинга;
  10. Мониторинг исполнения;
  11. Оценка результата.

Иррациональный выбор альтернатив включает все те же составляющие, но в таком «сжатом» виде, что трассирование причинно-следственных связей становится невозможным.

Проблема эргодичности

Для того чтобы делать «строгие» статистически достоверные прогнозы на будущее, нужно получить выборку из будущих данных. Так как это невозможно, то многие специалисты предполагают, что выборки из прошлых и текущих, например, рыночных индикаторов равнозначны выборке из будущего. Иными словами, если встать на такую точку зрения, то получится, что прогнозируемые показатели - лишь статистические тени прошлых и текущих рыночных сигналов. Такой подход сводит работу аналитика к выяснению, каким образом участники рынка получают и обрабатывают рыночные сигналы. Без устойчивости рядов нельзя делать обоснованных выводов. Но это вовсе не значит, что ряд должен быть устойчив во всем. Например, он может иметь устойчивые дисперсии и совершенно нестационарные средние - в этом случае мы будем делать выводы только о дисперсии, в обратном случае только о среднем. Устойчивости могут носить и более экзотический характер. Поиск устойчивостей в рядах и есть одна из задач статистики.

Если лица, принимающие решения, полагают, что процесс не является стационарным (устойчивым), а следовательно, эргодическим , и даже если они считают, что вероятностные функции распределения инвестиционных ожиданий все-таки могут быть просчитаны, то эти функции «подвержены внезапным (то есть непредсказуемым) изменениям» и система, по существу, непредсказуема.

Принятие решений в условиях неопределённости

Условиями неопределённости считается ситуация, когда результаты принимаемых решений неизвестны. Неопределённость подразделяется на стохастическую (имеется информация о распределении вероятности на множестве результатов), поведенческую (имеется информация о влиянии на результаты поведения участников), природную (имеется информация только о возможных результатах и отсутствует о связи между решениями и результатами) и априорную (нет информации и о возможных результатах). Задача обоснования решений в условиях неопределённости всех типов, кроме априорной, сводится к сужению исходного множества альтернатив на основе информации, которой располагает лицо, принимающее решение (ЛПР). Качество рекомендаций для принятия решений в условиях стохастической неопределённости повышается при учёте таких характеристик личности ЛПР, как отношение к своим выигрышам и проигрышам, склонность к риску. Обоснование решений в условиях априорной неопределённости возможно построением алгоритмов адаптивного управления

Выбор при неопределённости

Эта область представляет ядро теории принятия решений.

Термин «ожидаемая ценность» (теперь называется математическое ожидание) был известен с XVII века . Блез Паскаль использовал это в его известном пари, (см. ниже), который содержится в его работе «Мысли о религии и других предметах », изданной в . Идея ожидаемой ценности заключается в том, что перед лицом множества действий, когда каждое из них может дать несколько возможных результатов с различными вероятностями, рациональная процедура должна идентифицировать все возможные результаты, определить их ценности (положительные или отрицательные, затраты или доходы) и вероятности, затем перемножить соответствующие ценности и вероятности и сложить, чтобы дать в итоге «ожидаемую ценность». Действие, которое будет выбрано, должно давать наибольшую ожидаемую ценность.

Альтернативы теории вероятностей

Очень спорная проблема - можно ли заменить использование вероятности в теории решения другими альтернативами. Сторонники нечёткой логики , теории возможностей , теории очевидностей Демпстера-Шафера и др. поддерживают точку зрения, что вероятность - только одна из многих альтернатив и указывают на многие примеры, где нестандартные альтернативы использовались с явным успехом. Защитники теории вероятностей указывают на:

  • работу Ричарда Трелкелда Кокса по оправданию аксиом теории вероятностей;
  • парадоксы Бруно де Финетти как иллюстрацию теоретических трудностей, которые могут возникнуть благодаря отказу от аксиом теории вероятностей;
  • теоремы совершенных классов, которые показывают, что все допустимые решающие правила эквивалентны байесовскому решающему правилу с некоторым априорным распределением (возможно неподходящим) и некоторой функции полезности . Таким образом, для любого решающего правила, порожденного невероятностными методами, либо есть эквивалентное байесовское правило, либо есть байесовское правило, которое никогда не хуже, но (по крайней мере) иногда и лучше.

Действительнозначность вероятностной меры под сомнение была поставлена только однажды - Дж. М. Кейнсом в его трактате «Вероятность» (1910 год). Но сам автор в 30-х годах назвал эту работу «самой худшей и наивной» из его работ. И в 30-х годах стал активным приверженцем аксиоматики Колмогорова - Р. фон Мизеса и никогда не ставил ее под сомнение. Конечность вероятности и счетная аддитивность - это сильные ограничения, но попытка убрать их, не разрушив здания всей теории, оказались тщетными. Это в 1974 году признал один из самых ярких критиков аксиоматики Колмогорова - Бруно де Финетти.

Более того, он показал фактически обратное - отказ от счетной аддитивности делает невозможными операции интегрирования и дифференцирования и, следовательно, не дает возможности использовать аппарат математического анализа в теории вероятностей. Поэтому задача отказа от счетной аддитивности - это не задача реформирования теории вероятностей, это задача отказа от использования методов математического анализа при исследовании реального мира.

Попытки же отказаться от конечности вероятностей привели к построению теории вероятностей с несколькими вероятностными пространствами на каждом, из которых выполнялись аксиомы Колмогорова, но суммарно вероятность уже не должна была быть конечной. Но пока неизвестно каких-либо содержательных результатов, которые могли бы быть получены в рамках этой аксиоматики, но не в рамках аксиоматики Колмогорова. Поэтому это обобщение аксиом Колмогорова пока носит чисто схоластический характер.

С.Гафуров полагал, что принципиальным отличием теории вероятности Кейнса (а, следовательно, и мат. статистики) от колмогоровской (Фон Мизеса и пр.) является то, что Кейнс рассматривает статистику с точки зрения теории принятия решений для нестационарных рядов…. Для Колмогорова, Фон Мизеса, Фишера и пр. статистика и вероятность применяются для существенно стационарных и эргодичных (при правильно подобранных данных) рядов - окружающего нас физического мира…


Wikimedia Foundation . 2010 .

Гулина О.М.

«Прикладные методы принятия решения»

Объем – 72 стр.

Тираж 50 экз.

Назначение – для студентов специальностей ВТ, АСУ, Информационные системы, направления ИВТ, а также специальности Менеджмент организации всех форм обучения.

Рассматриваются методология и задачи теории принятия решений, основные типы неопределенностей и общие подходы и методы принятия решений в этих ситуациях. Приведены примеры практических ситуаций с подробными пояснениями и решениями. Для самоконтроля студентов лекционный курс дополнен контрольными вопросами по темам.

Введение

Курс теории принятия решений входит в программы подготовки специалистов в области информатики, техники и технологий, а также в программы подготовки менеджеров, подчеркивая важную роль умения принимать оптимальные управленческие решения. Этот курс состоит из целого класса дисциплин, ориентированных на использование информации при принятии решений (ПР) в самых разных ситуациях.

Процессы принятия решений лежат в основе любой целенаправленной деятельности:

    без принятия решений невозможно обойтись в обыденной жизни:

Мы выбираем Вуз, работу, дом , место отдыха, планируем бюджет семьи и т.д.

    без принятия решений невозможно развитие производства, фирмы , НИИ, отраслей экономики,…

    также невозможно обойтись без принятия политических решений – распределение средств госбюджета, способ проведения реформы образования, земельной реформы, способы проведения налоговой политики,…

Задача выбора является одной из центральных в экономике. Покупатель решает, что покупать и за какую цену. Производитель решает, во что вкладывать капитал, какие товары производить. Выбор, как правило, осуществляется на основании анализа некоторого показателя эффективности. Соответствующие модели расчета активно используются при детерминированном выборе. Однако часто выбор приходится осуществлять в условиях неопределенности различной природы. И для всестороннего анализа необходимо:

В каждом конкретном случае понимать внутреннюю природу имеющейся неопределенности и ее истоки;

Понимать каким образом учитывается эта неопределенность выбранной математической моделью;

Разобраться в существе метода, с помощью которого находится решение для данной модели при наличии надлежащих исходных данных, т.к. выбор метода зависит от информированности лица, принимающего решение (ЛПР).

Выбор должен быть обоснованным, т.е. сделанным на основе решения определенной оптимизационной задачи. Постановка такой задачи в зависимости от ситуации приводит к различным математическим моделям.

Принятие решений в условиях конфликта и противоборства сторон, принятие решений в коллективе, стратегическое планирование и прогнозирование, построение планов достижения цели...

Чтобы научиться принимать правильные, оптимальные решения, необходимо рассмотреть общие принципы их разработки и методы, позволяющие принять оптимальные в некотором смысле решения. В первую очередь это относится к решениям, последствия которых могут быть достаточно весомыми. Отсюда возникает необходимость в разработке методов, упрощающих процесс принятия решений (ППР) и дающих решениям большую надежность.

Теория принятия решений изучает общие схемы, используемые людьми при выборе нужного решения из множества альтернативных возможностей.

В связи с этим, приступая к исследованию конкретной задачи управления, необходимо в первую очередь выяснить

С какими видами неопределенности придется столкнуться, и каким образом это может отразиться на выборе оптимального решения;

Можно ли в рамках принятой модели адекватным образом учесть недетерминированный характер исследуемой ситуации.

Участие людей в принятии решения требует обоснования позиции при осуществлении выбора. Субъективизм в задачах принятия решения связан с выбором модели, анализом ситуаций, назначением предпочтений и т.д.

Одной из основных проблем, возникающих при анализе ситуации и принятии решения, является формализованное представление информации, т.е. разработка математической модели рассматриваемой ситуации. В зависимости от того, какого рода информация имеется, используются различные формальные процедуры. Например, если информация присутствует в виде экспертных суждений, то используются эвристические методы. Если рассматриваются конфликтные ситуации, то используются модели теории игр.

В книгу вошел материал курса лекций по теории принятия решений, читаемый автором в Обнинском государственном техническом университете атомной энергетики.

В главе 1 приведены основные положения и терминология теории принятия решений. Любая деятельность связана с риском. Принятие решений в условиях риска, поиск дополнительной информации, элементы теории статистических решений изложены в главе 2. Практически любая задача ПР является многокритериальной. В главе 3 рассматриваются как постановка многокритериальных задач, так и способы преодоления неопределенности целей для различных исходных данных и степени информированности ЛПР.

В конце каждой темы приведен список основных понятий, определяющих содержание темы, а также контрольных вопросов для самопроверки.

Остается добавить, что, поскольку процессы принятия решений лежат в основе любой целенаправленной деятельности, то знание элементов теории принятия решений будет полезно любому образованному человеку.

Принятию решений нужно учиться .

1 Основные положения теории принятия решений

1.1 Особенности задач принятия решений

Далеко не всегда принятие решений (ПР) происходит в условиях полной определенности. Это скорее исключение, чем правило.

Неопределенность связана со случайным влиянием внешних факторов, с недетерминированностью собственных свойств системы или ситуации, с неполнотой построенной математической модели.

Принимать решения приходится в условиях различной информированности. Поэтому необходимо стремиться к использованию всей имеющейся информации и, взвесив все возможные варианты, постараться найти среди них наилучший. Устранение неопределенности при ПР требует использования соответствующих методов и процедур.

“Только решения и планы бывают идеальными, а люди и обстоятельства всегда реальны. Поэтому любое управленческое решение несет в себе возможность не только успеха, но и неудачи”.

Центральную роль в ПР играет понятие риска .

И в коммерции, и в политике, и в хозяйственной деятельности, и в технических задачах риск часто бывает неизбежным и должен учитываться. Понятие риска очень разнообразно и зависит от ситуации, в которой он рассматривается. Как требует научный подход, в каждом случае ему можно дать конкретное, но непременно количественное определение. И задача заключается в том, чтобы свести этот риск к минимуму.

Методы поиска оптимальных решений рассматривают в разделах классической математики, связанных с изучением экстремумов функций или функционалов. На практике решения нужно оценивать с различных точек зрения, учитывая физические (габариты, вес,…), экономические (стоимость, прибыль,…), технические и другие аспекты. Это требует построения моделей оптимизации решений одновременно по нескольким критериям – возникает многокритериальная задача.

Часто приходится принимать решения в условиях конфликта . Тогда используются игровые методы принятия решений.

Таким образом, задача состоит в том, чтобы формализовать процесс принятия решений (ППР) и изучить математические методы принятия решений при различных типах неопределенности.

Элементы задачи принятия решений

Цели

Целевые показатели могут быть качественными или количественными в зависимости от условий, в том числе от периода времени, на который осуществляется прогноз:

Качественные цели называются ориентирами,

количественные – целевыми функциями.

Цель описывается в виде требуемого результата. Например, ориентирами являются цели: «Выбор учебного заведения», «Размещение заказа на производство продукции», «Подбор персонала для предприятия» и т.д.

Цель может быть уточнена с помощью подцелей или целевых функций. Например, цель «Подбор персонала для предприятия» может быть раскрыта в виде таких целевых функций как «квалификация по специальности как можно выше», «владение иностранными языками как можно в большей степени», «хорошее владение информационными технологиями», «приветствуется дополнительная квалификация» и т.д.

Стратегии

Сформулированные цели требуют разработки соответствующих путей их достижения. Причем стратегии , разработанные для одних целей, могут быть неприменимы для других.

Альтернативы

Каждая стратегия имеет несколько вариантов ее реализации, или альтернативных решений.

Альтернативы – это решения, стратегии поведения , варианты действий, они являются неотъемлемой частью задачи ПР.

Для постановки задачи необходимо иметь хотя бы две альтернативы.

Альтернативы бывают зависимыми и независимыми. Независимыми являются те альтернативы, любые действия с которыми (удаление из рассмотрения, выделение в качестве единственно лучшей) не влияют на качество других альтернатив.

При зависимых альтернативах оценки одних из них оказывают влияние на качество других. Имеются различные типы зависимости альтернатив. Наиболее простым и очевидным является непосредственная групповая зависимость: если решено рассматривать хотя бы одну альтернативу из группы, то надо рассматривать и всю группу. Так, при планировании модернизации производства необходимо рассматривать все варианты.

Успешное решение проблемы в значительной мере обусловлено тем, насколько точно сформулированы возможные альтернативы. Всегда есть опасность, что одна или несколько потенциально лучших альтернатив будут упущены. Как правило, усилия, затраченные на тщательное выявление возможных альтернатив, не бывают напрасными.

Альтернативы могут быть определены заранее, их также можно строить в процессе решения задачи. Примером может быть задача выбора проекта застройки города: рассмотрев предложенные альтернативы и отметив их сильные и слабые стороны, можно сконструировать новую альтернативу, свободную от указанных недостатков, и взять ее за основу.

Из множества вариантов решения проблемы следует исключить те, которые не могут быть реализованы по каким-либо причинам, в том числе в отпущенные для решения сроки. Оставшиеся альтернативы образуют исходное множество альтернатив (ИМА) ={ x } .

Выбор той или иной альтернативы хЄприводит к цели , ноколичественные показатели достижения цели при этом будут разными.

Методы формирования ИМА

В зависимости от степени формализации технологий различают следующие классы методов:

Эмпирические (каузальные)

Логико-эвристические

Абстрактно-логические (математические)

Рефлексивные.

Эмпирические методы основаны на использовании общих признаков, присущих тем или иным практическим приемам решения конкретных задач. Это методы решения конкретных задач, аккумулированные в набор правил, как поступать в том или ином случае. Например, машинная технологияCBR(Case-BasedReasoning– «метод рассуждений на основе прошлого опыта»): анализируемая ситуация принятия решений сопоставляется в памяти ЭВМ со всеми известным из прошлого сходными ситуациями; из базы данных машина отбирает несколько ситуаций, похожих на анализируемую, и представляет их ЛПР.

Логико-эвристические методы генерации множества альтернатив предполагают разбиение рассматриваемой проблемы на отдельные задачи, подзадачи, операции и т.д. до таких элементарных действий, для которых уже известны эвристические решения и конкретные технологии их исполнения. По частоте применения данные методы лидируют. Примером таких методов является метод «дерева решений».

Рассмотрим метод «дерева решений». Он применяется для представления возможных действий и для нахождения последовательности правильных решений, ведущих к максимальной ожидаемой полезности. Это специального вида граф, где существует два типа узлов: квадратик, где решение принимает человек, и кружок, где все решает случай. Пример такого графа приведен на рис.1. Здесь ЛПР должен выбрать одно из действий -D 1 илиD 2 . Вмешательство случая состоит в том, что по независящим от ЛПР обстоятельствам с вероятностью Р 1 он получит результат С 1 , а с вероятностью Р 2 – результат С 2 , если выберет первое решение; при выборе в качестве решенияD 2 он с соответствующими вероятностями получит С 3 или С 4 .

Рис. 1. Пример дерева решений

Общую полезность каждого действия рассчитываем как ожидаемую:

U 1 =U(D 1)=C 1 P 1 +C 2 P 2 ;U(D 2)=C 3 P 3 +C 4 P 4 , - и выбираем в качестве лучшей альтернативу с максимальной ожидаемой полезностью.

Такой граф строится слева направо для всей последовательности принятия многошаговых решений, а затем анализируется справа налево, вычисляя полезность каждой альтернативы и вычеркивая невыгодные решения.

К абстрактно-логическим методам относятся те, которые позволяют отвлечься от сущности конкретных действий или приемов работы и сосредоточиться только на их последовательности. К задачам, где применяются такие методы, относятся методы формирования планов выполнения взаимосвязанных работ (методы сетевого планирования и управления, методы календарного планирования).

Рефлексивные методы используются в задачах с поведенческой неопределенностью (экономические, социальные, политические конфликты). Метод основан на последовательном выдвижении гипотез о возможных целях другого субъекта операции и формировании ответных реакций. После этого анализируются оба списка, корректируются и уточняются альтернативы обеих сторон.

Следовательно, задача состоит в том, чтобы количественный показатель достижения цели – целевая функция – был оптимальным (например, прибыль – максимальной, затраты – минимальными при определенных ограничениях: на ресурсы, время, рабочую силу и т.д.).

К сожалению, нет универсальных рецептов, чтобы сделать этот выбор безошибочным. Поэтому ЛПР должен полагаться на опыт, здравый смысл и непрерывный анализ ситуаций.

В этом курсе мы будем исследовать модели ППР и их свойства.

Компания «Коттедж» хочет расширить свое влияние на рынке. Однако успех в достижении цели определяется также наличием конкурентов и их поведением. Задача состоит в том, чтобы выработать оптимальную стратегию поведения.

Пример 2

Инвестор решает проблему вложения средств в современный проект. Результат будет зависеть от того, насколько хорошо предлагаемый товар будет принят на рынке. Задача – оценить результативность проекта и решить вопрос о вложении средств.

Пример 3

Фирма “Золотой ключик”, специализирующаяся на производстве конфет, стоит перед дилеммой: повышать ли производственные ресурсы уже действующего завода или строить новое предприятие такого же профиля? По мнению президента, решение зависит от того, какая доля рынков сбыта будет принадлежать фирме в ближайшие десять лет.

Во всех этих примерах и во многих других ситуациях общим является следующее: имеется ЛПР (управляющий компании, инвестор, президент); множество вариантов, или альтернатив (множество стратегий, дилеммы инвестора и “Золотого ключика”). Нужно выделить из них некоторое подмножество 0 , лучше – один вариант.

Как выделить  0 ? Как сравнивать альтернативы?

Любой вариант имеет свое качество, которое характеризуется различными показателями и определяет полезность рассматриваемого варианта с точки зрения достижения цели. В совокупности предпочтения ЛПР в этом отношении могут определяться некоторым принципом оптимальности (ОП) – «что такое хорошо».

Например, решение инвестировать проект разумно, если чистый дисконтированный доход, соответствующий его реализации, окажется положительным. Для президента «Золотого ключика» результатом, характеризующим каждую из рассматриваемых альтернатив, можно считать годовой доход предприятия (чем он больше, тем лучше) или прибыль.

Тогда задача принятия решения – это совокупность двух составляющих {, ОП} – исходного множества альтернатив и назначенного принципа оптимальности, её решение 0 .

Если не определены варианты, то выбирать не из чего, если нет принципа сравнения, то нельзя сравнить варианты и найти решение.

  • 3.4. Обобщенная структура экспертной системы
  • Лекция 4. Классификация прикладных интеллектуальных систем
  • 4.1. Классификация экспертных систем
  • 4.2. Примеры прикладных интеллектуальных систем
  • Лекция 5. Основные понятия и определения теории принятия решений
  • 5.1. Роли людей в процессе принятия решений
  • 5.2. Альтернативы
  • 5.3. Критерии
  • 5.4. Основные этапы процесса принятия решений
  • 5.5. Математические методы теории принятия решений
  • Лекция 6. Принятие решений с помощью статистической проверки гипотез
  • 6.1. Статистические решения
  • 6.2. Основные задачи статистических решений
  • 6.3. Статистическая проверка гипотез
  • 6.4. Ошибки решения
  • 6.5. Решающее правило при проверке гипотез
  • Лекция 7. Байесовская и последовательная процедуры принятия решения.
  • 7.1. Байесовские процедуры принятия решения
  • 7.1.1. Байесовская процедура при проверке простой гипотезы
  • 7.1.2. Байесовские процедуры в задаче классификации
  • 7.2. Принятие решения с помощью последовательной процедуры Вальда
  • Лекция 8. Принятие решения методом дискриминантнного анализа
  • 8.1. Классификация в случае, когда распределения классов определены полностью
  • 8.1.1. Модель двух нормальных распределений с общей ковариационной матрицей (модель Фишера)
  • 8.1.2. Модель двух нормальных распределений с разными ковариационными матрицами
  • 8.1.3. Модель нескольких нормальных распределений с общей ковариационной матрицей
  • 8.2. Классификация при наличии обучающих выборок
  • 8.2.1. Подстановочный алгоритм в модели Фишера
  • 8.2.3. Правила классификации
  • 8.3. Ошибка решающего правила
  • Лекция 9. Древообразные классификаторы
  • 9.1. Назначение древообразных классификаторов
  • 9.1. Структура дерева классификации
  • 9.3. Вычислительные задачи древообразных классификаторов
  • 9.3.1. Определение качества предсказания
  • 9.3.2. Выбор разбиений
  • 9.3.3. Определение правила прекращения разбиения
  • Лекция 10. Деревья решений
  • 9.1. Характеристики дерева решений
  • 9.2. Построение дерева решений
  • Лекция 11. Методы прогнозирования
  • 11.1. Анализ временных рядов
  • 11.1.1. Модель временного ряда
  • 11.1.2. Тренд, сезонная и циклическая компоненты
  • 11.1.3. Декомпозиция временного ряда
  • 11.1.4. Экспоненциальное сглаживание
  • 11.2. Каузальные методы прогнозирования
  • 11.3. Качественные методы прогнозирования
  • Лекция 12. Основная задача линейного программирования
  • 12.1. Математическая модель основной задачи линейного программирования
  • 12.2. Задача линейного программирования с ограничениями-неравенствами
  • 12.3. Примеры задач линейного программирования
  • 12.3.1. Транспортная задача
  • 12.3.2. Задача о назначениях
  • Лекция 13. Симплекс-метода решения задачи линейного программирования
  • 13.1. Характеристика симплекс–метода
  • 13.2. Табличный алгоритм замены базисных переменных
  • 13.3. Отыскание опорного решения основной задачи линейного программирования
  • 13.4. Отыскание оптимального решения основной задачи линейного программирования
  • Лекция 14. Многокритериальные методы принятия решений при объективных моделях
  • 14.1. Объединение критериев
  • 14.2. Метод главного критерия
  • 14.3. Метод последовательных уступок
  • 14.4. Метод целевого программирования
  • 14.5. Метод, использующий принцип гарантированного результата
  • 14.6. Метод равных наименьших относительных отклонений
  • 14.7. Процедура STEM поиска удовлетворительных значений критериев
  • Лекция 15. Выбор Парето–оптимальных решений
  • 15.1. Основные определения
  • 15.2. Графическая интерпретация
  • 15.3. Постановка задачи
  • Лекция 16. Оценка многокритериальных альтернатив с помощью теории полезности
  • 16.1. Теория полезности
  • 16.2. Принятие решения на основе значения ожидаемой полезности
  • 16.3. Многокритериальная теория полезности (MAUT)
  • Лекция 17. Сравнение альтернатив методом аналитической иерархии
  • 17.1. Основные этапы метода аналитической иерархии
  • 17.2. Декомпозиция задачи
  • 17.3. Попарное сравнение критериев и альтернатив
  • 17.4. Свойства идеальной матрицы сравнений
  • Лекция 18. Приоритеты для критериев и альтернатив и выбор наилучшей альтернативы в методе анализа иерархий
  • 18.1. Вычисление собственных характеристик обратно симметричной матрицы
  • 18.2. Вычисление величины приоритетов
  • 18.3. Определение наилучшей альтернативы
  • 18.4. Проверка согласованности
  • 18.5. Пример применения метода анализа иерархий
  • Лекция 19. Оценка многокритериальных альтернатив методами ELECTRE
  • 19.1. Этапы подхода, направленного на разработку индексов попарного сравнения альтернатив
  • 19.2. Свойства бинарных отношений
  • 19.3. Метод ELECTRE I
  • 19.4. Метод ELECTRE II
  • 19.5. Метод ELECTRE III
  • Лекция 20. Основные понятия и математическая модель игровых методов обоснования решений
  • 20.1. Основные понятия теории игр
  • 20.2. Математическая модель игры
  • 20.3. Нижняя и верхняя цена игры. Принцип минимакса
  • Лекция 21. Методы решения игр
  • 21.1. Решение игры в чистых стратегиях
  • 21.2. Решение игры в смешанных стратегиях
  • 21.3. Упрощение игр
  • 21.4. Решение игры 2х2
  • 21.5. Графический метод решения (2х2)-игр
  • Лекция 22. Игры 2 х п
  • Лекция 23. Решение игр т х 2 и т х п
  • 23.1. Решение игр т х 2
  • 23.2. Решение игр т х п
  • Лекция 24. Критерии принятия решений в условиях риска и неопределенности
  • 24.1. Основные понятия. Математическая модель
  • 24.3. Максиминный критерий Вальда
  • 24.4. Критерий минимаксного риска Сэвиджа
  • 24.5. Критерий пессимизма-оптимизма Гурвица
  • Литература
  • Эволюционные алгоритмы используются в задачах управления, например, в задаче планирования маршрута для мобильного робота. Целью любой навигационной системы является достижение места назначения с рациональным расходованием ресурсов, без столкновений с другими объектами. Зачастую путь робота планируется заранее в режиме офлайн (необходимые сведения вводятся заранее, данные и знания не меняются в сеансе решения задачи, время реакции велико). Эволюционные алгоритмы позволяют объединить офлайн-планирование и планирование в реальном времени (онлайн-планирование). Офлайнпланирование ищет близкий к оптимальному путь, а онлайн-планирование учитывает возможные столкновения из-за обнаружения неизвестных объектов и заменяет часть первоначального плана другим маршрутом. Эволюционные алгоритмы применены к построению бесконфликтных маршрутов самолетов и для разрешения воздушных конфликтов.

    Автоматическое доказательство теорем применяется в управлении движущимися объектами для построения полностью автономных систем. Примером является система управления мобильным интегральным роботом STRIPS – самоходным аппаратом, совершающим передвижения по командам, формируемым в устройстве управления. Типичной задачей, решаемой STRIPS, является задача перемещения детали из некоторой точки рабочего пространства с помощью схвата робота в контейнер.

    Интеллектуальная система, основанная на нечетких правилах, осуществляет проводку грузового судна между островами без вмешательства человека. Одна португальская компания в целлюлозно-бумажной промышленности реализовала нечеткое управление автоклавами. Для записи стратегии управления использовано 25 нечетких правил, что позволило значительно уменьшить вариации качества продукции и затраты энергии и потребления сырья. Описаны примеры нечеткого управления выпуском изделий на технологической операции «металлизация» прецизионных резисторов и модели управления роботом-манипулятором в системе «глаз - рука».

    Нечеткие правила успешно использованы в проекте самолета с высокотехнологичными крыльями улучшенной аэродинамики. В 1990 г. японскими производителями продано бытовой нечетко управляемой техники на сумму в несколько миллиардов американских долларов.

    Лекция 5. Основные понятия и определения теории принятия решений

    Под принятием решений понимается процесс человеческой деятельности, направленный на выбор наилучшего варианта действий . Модели, описывающие поведение людей, широко используются в исследовании операций. Подисследованием операций понимают применение математических, количественных методов для обоснования решений во всех областях целенаправленной человеческой деятельности .

    Под операцией мы будем понимать систему действий, объединенных единым замыслом и направленных к достижению определенной цели. Операция всегда является управляемым мероприятием. От нас зависит выбор каких-то параметров, характеризующих способ ее организации. Всякий определенный выбор зависящих от нас параметров будем называтьрешением . Само принятие решения выходит за рамки исследования операций и относится к компетенции ответственного лица (или группы лиц), которым предоставлено право окончательного выбора.

    5.1. Роли людей в процессе принятия решений

    В процессе принятия решений люди могут играть разные роли . Будем называть человека, фактически осуществляющего выбор наилучшего варианта действий, лицом, принимающим решения (ЛПР). Другой ролью, которую может играть человек в процессе принятия решений, является роль руководителя или участникаактивной группы – группы

    людей, имеющих общие интересы и старающихся оказать влияние на процесс выбора и его результат.

    В процессе принятия решений человек может выступать в роли эксперта , т.е. профессионала в той или иной области, к которому обращаются за оценками или рекомендациями. При подготовке сложных решений иногда принимает участиеконсультант по принятию решений . Его роль состоит в организации процесса принятия решений: помощи ЛПР в правильной постановке задачи, выявлении позиций активных групп, организации работы с экспертами.

    Особое место занимает лицо (группа лиц), владеющее математическими методами и использующее их для анализа операции. Это лицо (исследователь операции, исследователь-аналитик ) само решений не принимает, а лишь помогает в этом

    5.2. Альтернативы

    Варианты действий принято называть альтернативами. Для постановки задачи принятия решений необходимо иметь хотя бы две альтернативы.

    Альтернативы бывают независимыми и зависимыми. Независимыми являются те альтернативы, любые действия с которыми (удаление из рассмотрения, выделение в качестве лучшей) не влияют на качество других альтернатив. При зависимых альтернативах оценки одних из них оказывают влияние на качество других. Имеются различные типы зависимости альтернатив. Наиболее простым является групповая зависимость: если решено рассматривать хотя бы одну альтернативу из группы, то надо рассматривать и всю группу.

    Используя понятие альтернативы, довольно часто процесс принятия решений определяют как обоснованный выбор наилучшей альтернативы из множества альтернатив.

    5.3. Критерии

    Варианты решений характеризуются различными показателями их привлекательности для ЛПР. Эти показатели называют критериями. Критерии оценки альтернатив – это показатели их привлекательности для участников процесса выбора.

    В большинстве задач имеет довольно много критериев оценок вариантов решений. Эти критерии могут быть независимыми и зависимыми.

    Предположим, что две сравниваемые альтернативы имеют различные оценки по первой группе критериев и одинаковые по второй группе. В теории принятия решений принято считать критерии зависимыми, если предпочтения ЛПР при сравнении альтернатив меняются в зависимости от оценок по второй группе критериев.

    На сложность задач принятия решения влияет также количество критериев. При небольшом количестве критериев (два – три) задача сравнения альтернатив достаточно проста, качества по критериям могут быть сопоставлены. При большом количестве критериев задача усложняется из-за трудностей сопоставления.

    Конкретный вид критерия, которым следует пользоваться при численной оценке эффективности той или иной операции, зависит от специфики рассматриваемой операции, а также от задачи исследования.

    Многие операции выполняются в условиях, содержащих элемент случайности. В Этих случаях в качестве критерия оценки выбирается не просто характеристика исхода операции, а ее среднее значение (математическое ожидание). Например, если задача состоит в получении максимальной прибыли, то в качестве критерия берется средняя прибыль. В других случаях, когда задачей является осуществление вполне определенного события, в качестве критерия берут вероятность этого события.

    5.4. Основные этапы процесса принятия решений

    Процесс принятия решений состоит из последовательности этапов, а именно:

    идентификация проблемы,

    определение целей и критериев для выбора решения,

    определение вариантов решения (альтернатив),

    анализ и сравнение альтернатив,

    выбор наилучшей альтернативы

    организация контроля.

    Рассмотрим содержание некоторых из перечисленных этапов.

    Формулировка (идентификация) проблемы – это определение сути проблемы

    (рис.5.1). Необходимо идентифицировать саму проблему, а не симптомы ее проявления.

    Рис.5.1. Этап формулировки проблемы

    Очень важно четко определить цели выбора решения и критерии их оценки. Желательно, чтобы критерии оценки принимаемых решений можно было бы оценить количественно, хотя это не всегда возможно. Рассмотрим в качестве примера задачу выбора трассы газопровода на севере Сибири. Задача характеризовалась небольшим числом альтернатив (две – три), большое число критериев (шесть – десять). Было необходимо выбрать одну, лучшую альтернативу. Список критериев включал в себя: стоимость постройки трубопровода; время строительства; надежность трубопровода; вероятность аварий; последствия аварий; влияние на окружающую среду; безопасность для населения и т.д.

    Успешное решение проблемы во многом зависит от разработанных альтернатив. Сравнение и анализ альтернатив проводят с использованием математических методов. Для применения количественных методов требуется построить математическую модель явления. При построении модели необходимо установить количественные связи между условиями операции, параметрами решения и исходом операции – критериями или показателями эффектности.

    Выбор модели. Если проблема сформулирована корректно, появляется возможность выбора готовой модели. Если готовой модели нет, возникает необходимость создания такой модели (рис. 5.2).

    Банк моделей

    Рис. 5.2. Выбор модели

    Существует математические модели, которые хорошо описывают различные ситуации, требующие принятия тех или иных решений. Выделим из них следующие три класса: детерминированные, стохастические и игровые модели.

    При разработке детерминированных моделей исходят из предпосылки, что основные факторы, характеризующие ситуацию, определены и известны. Здесь обычно ставится задачи оптимизации некоторой величины (например, минимизация затрат).

    Стохастические (вероятностные, статистические) модели применяются в тех случаях, когда некоторые факторы носят неопределенный, случайный характер.

    При учете наличия противников либо союзников с собственными интересами необходимо применение теоретико-игровых моделей.

    Нахождение решения (рис. 5.3.). Для поиска решения необходимы конкретные данные, сбор и подготовка которых требуют, как правило, значительных усилий. Если данные уже имеются, их часто приходится преобразовывать к виду, соответствующему выбранной модели.

    Подготовка

    Рис. 5.3. Нахождение решения

    Проверка решения. Полученное решение должно быть проверено на приемлемость при помощи соответствующих тестов. Неудовлетворительность решения означает, что выбранная модель не точно отражает природу изучаемой проблемы. В этом случае она должна быть либо усовершенствована, либо заменена более подходящей моделью

    Организация контроля. Если найденное решение оказалось приемлемым, то необходимо организовать контроль за правильным использованием модели. Основная задача такого контроля состоит в обеспечении соблюдения ограничений, предполагаемых моделью, качества исходных данных и получаемого решения.

    5.5. Математические методы теории принятия решений

    Применение тех или иных математических методов обусловлено характером решаемых задач. В науке принятия решений выделяют три типа проблем: хорошо структуризованные, слабоструктуризованные и неструктуризованные проблемы . Хорошо структуризованные , или количественно сформулированные проблемы, – те, в которых существенные зависимости могут иметь численное выражение.Слабоструктуризованные , или смешанные проблемы, – те, которые содержат как качественные, так и количественные элементы, причем качественные, малоизвестные и неопределенные стороны проблем преобладают. Типичные проблемы исследования операций являются хорошо структуризованными. В многокритериальных задач принятия решений часть информации, необходимой для полного и однозначного решения, отсутствует. Такие проблемы являются слабоструктуризованными.

    Существуют проблемы, в которых известен только перечень основных параметров, но количественные связи между ними установить нельзя. В таких случаях структура, понимаемая как совокупность связей между параметрами, не определена, и проблема называется неструктуризованной .

    Для решения хорошо структуризованных задач применяются методы линейного и динамического программирования, игровые методы обоснования решений, методы теории статистических решений, методы математической статистики и теории вероятностей, методы теории массового обслуживания, методы статистического моделирования и т.д. Для решения слабоструктуризованных и неструктуризованных задач используются различные методы оценки многокритериальных альтернатив (экспертные методы, метод анализа иерархий, теория полезности, теория рисков т.д.), методы искусственного интеллекта, позволяющие моделировать поведение людей при решении тех или иных проблем.

    ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

    ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ«МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

    ИНСТИТУТ ДИСТАНЦИОННОГО ОБУЧЕНИЯ

    Яретенко Н. И.

    Математика (Исследование операций)

    Курс лекций

    для направления подготовки (специальности)

    230105.65 «Прикладная информатика (Программное обеспечение ВТ и АС)»,

    080801.65«Прикладная информатика (в экономике)»,080507.65 «Менеджмент организации»,080105.65 «Финансы и кредит», 080109.65 «Бухгалтерский учет, анализ и аудит».

    (C применением элементов дистанционного обучения)

    к. воен. наук, доцент

    кафедры Информационных систем и

    прикладной математики МГТУ.

    Курс лекций

    рассмотрен

    и одобрен кафедрой ИС и ПМ

    «__» _______ 2010 г.

    Рецензенты:

    В.В. Ковальчук,

    д.т.н., профессор, зав.кафедрой

    ИС и ПМ МГТУ.

    Н. Н. Морозов зав. кафедрой

    Физики МГТУ.

    Лекция. Основы теории принятия решений

    1.1. Общие положения………………………………………………………….6

    1.2. Основные понятия системного анализа…………………………………..8

    1.3. Основные понятия исследования операций…………………………….12

    1.4. Постановка задач принятия оптимальных решений……………………13

    1.5. Методология и методы принятия решений………………………………15

    Контрольные вопросы………………………………………………...17

    2. Лекция. Экономико – математическое моделирование

    2.1.Основные понятия.............................................................................18

    2.2.Классификация моделей....................................................................19

    2.3.Классификация решаемых экономических задач...............................21

    Контрольные вопросы....................................................................22

    Лекция. Линейное программирование

    3.1.Общая постановка задачи..................................................................23

    3.2. Двойственность в задачах линейного программирования……………25

    3.3.Теоремы двойственности...................................................................26

    3.4.Решение задач линейного программирования геометрическим

    методом................................................................................................28

    3.5.Симплексный метод решения задач линейного программирования...35

    Контрольные вопросы..................................................................39

    Лекция.Транспортная задача

    4.1.Постановка задачи..............................................................................41

    4.2.Алгоритм решения транспортных задач………………………….………42

    4.3.Метод наименьшего элемента..............................................................43

    4.5.Метод потенциалов.............................................................................44

    4.6.Примеры решения транспортных задач................................................45

    Контрольные вопросы..................................................................55

    5 .Лекция.Целочисленное программирование

    5.1.Постановка задачи целочисленного программирования........................57

    5.2.Графический метод решения задач целочисленного программирования.....................................................................................58

    5.3.Пример решения задачи целочисленного программирования…………..59

    5.4.Задача о коммивояжере……………………………………………………..61

    5.5.Пример решения задачи о коммивояжере…………………………………62

    Контрольные вопросы...................................................... .....64

    Лекция. Динамическое программирование

    6.1. Постановка задачи............................................................................65

    6.2.Принцип оптимальности Беллмана....................................................66

    6.3.Задача распределения средств на 1 год…………………………………67

    6.4. Задача распределения средств на 2 года............................... ……….72

    Контрольные вопросы........................................................72

    7. Лекция. Управление производством

    7.1.Задача о замене оборудования …………………………………………73

    7.2 Управление запасами. Складская задача ……………………………….79

    Контрольные вопросы..........................................................81

    Лекция. Теория игр

    8.1.Основные понятия………………………………………………………..82

    8.2.Антагонистические игры ………………………………………………..83

    8.3.Игры с «природой»...........................................................................85

    Контрольные вопросы………………………………………….93

    Лекция. Системы массового облуживания

    9.1.Формулировка задачи и характеристики СМО………………………..94

    9.2.СМО с отказами…………………………………………………………..96

    9.3.СМО с неограниченным ожиданием.................................................96

    9.4. СМО с ожиданием и с ограниченной длиной очереди……………….97

    9.5. Примеры решения задач...................................................................98

    Контрольные вопросы……………………………………….…..101

    Лекция. Сетевое планирование

    10.1. Основные понятия метода сетевого планирования.........................101

    10.2. Расчет сетевых графиков................................................................105

    Контрольные вопросы………………………………………...…109

    Лекция. Нелинейное программирование

    11.1. Основные понятия……………………………………………………..109

    11.2. Безусловный экстремум …………………………………..………….109

    11.3. Условный экстремум …………………………………………………111

    Контрольные вопросы................................................................112

    Перечень задач для решения при усвоении материала …………………. 112

    Литература ............................................................................... 128

    Вопросы для самопроверки ………………………………….………… .129

    Приложение: Греческий алфавит……………………………….…131

    ВВЕДЕНИЕ

    Курс « Математика. Исследование операций» занимает ключевую позицию в образовательных программах студентов большинства производственных и экономических специальностей. В процессе его усвоения у студентов должно сформироваться понимание принципов, математических моделей, формулируемых в рамках этих моделей задач и соответствующих методах поиска их решения.Все эти вопросы образуют фундамент, необходимый в современных условиях любому квалифицированному специалисту для решения задач управления различными организационными системами.

    Начало развития исследования операций как науки связывают с сороковыми годами двадцатого столетия.Само название дисциплины связано с применением математических методов для управления военными операциями.

    Одним из первых исследований является работа Л. В. Канторовича, Математические методы организации и планирования производства, вышедшая в 1939 г., а в зарубежной литературе – вышедшая в 1947 г. работа Дж. Данцинга, посвященная решению экстремальных линейных задач. В 1975 г. Л. В. Канторович стал лауреатом Нобелевской премии за свои работы по оптимальному использованию ресурсов в экономике.

    50-е и последующие годы были отмечены широким применением в практику полученных фундаментальных теоретических исследований и связанных с этим переосмыслением потенциальных возможностей теории исследования операций. Важный вклад в развитие новой науки также внесли такие видные ученные, как Дж. Фон. Нейман, Д. Гейл, К. Эрроу, Р. Беллман, Р. Гомори, Е. С. Вентцель, М. К. Гавурин и др.ученные.

    Курс лекций разработан на основании рабочих программ для направления подготовки (специальности) 230105.65 «Прикладная информатика (Программное обеспечение ВТ и АС)»,080801.65«Прикладная информатика (в экономике)»,080507.65 «Менеджмент о рганизации»,080105.65 «Финансы и кредит», 080109.65 «Бухгалтерский учет, анализ и аудит».

    При изложении содержания тем лекций указываются наиболее важные их элементы с рассмотрением теоретических вопросов и примеров практических задач, а также вопросы для самоконтроля. В заключительной части приводятся многочисленные варианты задач по каждой теме, которые позволят студентам лучше усвоить материал при самостоятельном изучении дисциплины в процессе подготовки к сдаче экзамена или зачета.

    В перечнях основной и дополнительной литературы указаны современные учебные и периодические издания, включающие задачи с решениями прикладной направленности.

    Лекция. Основы теории принятия решений.

    1.1. Общие положения

    1.2. Основные понятия системного анализа

    1.3. Основные понятия исследования операций

    1.4. Постановка задач принятия оптимальных решений

    1.5. Методология и методы принятия решений.

    Общие положения

    Человек наделён сознанием , существо свободное и обречено на выбор решений, стараясь сделать всё наилучшим образом.

    Теория принятия оптимальных решений в наиболее общем смысле представляет собой совокупность математических и численных методов, ориентированных на нахождение наилучших вариантов из множества альтернатив и позволяющих избежать их полного перебора.

    Так как размерность практических задач, как правило, достаточно велика, а расчеты в соответствии с алгоритмами оптимизации требуют значительных затрат времени, поэтому методы принятия оптимальных решений ориентированы главным образом на реализацию их с помощью ЭВМ.

    Практическая потребность общества в научных основах принятия решений возникла с развитием науки и техники.

    В XVIII веке началом науки "Теория принятия решений" следует считать работу Жозефа Луи Лагранжа, смысл которой заключался в следующем:

    сколько земли должен брать на лопату землекоп, чтобы его сменная производительность была наибольшей.

    Оказалось, что утверждение "бери больше, кидай дальше" неверен.

    Бурный рост технического прогресса, особенно во время и после второй мировой войны, ставил все новые и новые задачи, для решения которых привлекались и разрабатывались новые научные методы.

    Научно-техническими предпосылками становления "Теории принятия решений" являются:

    · удорожание "цены ошибки". Чем сложнее, дороже, масштабнее планируемое мероприятие, тем менее допустимы в нем "волевые" решения и тем важнее становятся научные методы, позволяющие заранее оценить последствия каждого решения, заранее исключить недопустимые варианты и рекомендовать наиболее удачные;

    · ускорение научно-технической революции техники и технологии. Жизненный цикл технического изделия сократился настолько, что "опыт" не успевал накапливаться и требовалось применение более развитого математического аппарата в проектировании;

    · развитие ЭВМ. Размерность и сложность реальных инженерных задач не позволяло использовать аналитические метода.

    Эта наука, с одной стороны, стала определенной ветвью других более общих наук (теория систем, системный анализ, кибернетика и т.д.), а с другой, стала синтезом определенных фундаментальных более частных наук (исследование операций, оптимизация и т.д.), создав при этом и собственную методологию.

    Экономика теснейшим образом связана с совокупностями объектов, которые принято называть сложными системами.Они характеризуются многочисленными и разнообразными по типу связями между отдельно существующими элементами системы и наличием у системы функции назначения, которой нет у составляющих ее частей.

    На первый взгляд каждая сложная система имеет уникальную организацию. Однако более детальное изучение способно выделить общее в системе команд ЭВМ, в процессах проектирования машины, самолета и космического корабля.

    В научно-технической литературе существует ряд терминов, имеющих отношение к исследованию сложных систем.

    Наиболее общий термин "теория систем". Его основными частями являются:

    · системный анализ, который понимается как исследование проблемы принятия решения в сложной системе,

    · кибернетика, которая рассматривается как наука об управлении и преобразовании информации.

    Кибернетика изучает отдельные и строго формализованные процессы, а

    системный анализ - совокупность процессов и процедур.

    Очень близкое к термину "системный анализ" понятие - "исследование операций", которое традиционно обозначает математическую дисциплину, охватывающую исследование математических моделей для выбора величин, оптимизирующих заданную математическую конструкцию (критерий).

    Системный анализ может сводиться к решению ряда задач исследования операций, но обладает свойствами, не охватываемыми этой дисциплиной.

    Однако в зарубежной литературе термин "исследование операций" не является чисто математическим и приближается к термину "системный анализ."

    Системный анализ, опираясь на исследование операций, включает:

    · постановку задачи для принятия решения;

    · описание множества альтернатив;

    · исследование многокритериальных задач;

    · методы решения задач оптимизации;

    · обработку экспертных оценок;

    · работу с макромоделями системы.

    Основные понятия системного анализа

    Системный анализ - наука, занимающаяся проблемой принятия решения в условиях анализа большого количества информации различной природы.

    цель системного анализа(к конкретной проблеме)-повышение степени обоснованности принимаемого решения из множества вариантов, среди которых производится выбор, с одновременным указанием способов отбрасывания заведомо невыгодных.

    В системном анализе выделяют

    · методологию;

    · аппаратную реализацию;

    · практические приложения.

    Методология включает определения используемых понятий и принципы системного подхода .


    Похожая информация.