Получение биогаза из свежей травы. Биогаз и биогазовые установки. Что это такое

Одна из задач, которую приходится решать в сельском хозяйстве — утилизация навоза и растительных отходов. И это довольно серьезная проблема, которая требует постоянного внимания. На утилизацию уходят не только время и силы, но и приличные суммы. Сегодня есть, как минимум, один способ, позволяющий эту головную боль превратить в статью дохода: переработка навоза в биогаз. В основе технологии лежит природный процесс разложения навоза и растительных остатков за счет содержащихся в них бактерий. Вся задача в создании особых условий для наиболее полного разложения. Эти условия — отсутствие доступа кислорода и оптимальная температура (40-50 o C).

Все знают, как чаще всего утилизируют навоз: складывают в кучи, потом, после ферментации, вывозят на поля. В этом случае образовавшийся газ выделяется в атмосферу, туда же улетает и 40% содержащегося в исходном веществе азота и большая часть фосфора. Получающееся в результате удобрение далеко не идеально.

Для получения биогаза необходимо чтобы процесс разложения навоза проходил без доступа кислорода, в закрытом объеме. В этом случае и азот, и фосфор остаются в остаточном продукте, а газ скопится в верхней части емкости, откуда его легко выкачать. Получаются два источника прибыли: непосредственно газ и эффективное удобрение. Причем удобрение высшего качества и безопасное на 99%: большая часть болезнетворных микроорганизмов и яйца гельминтов погибают, содержащиеся в навозе семена сорных трав теряют всхожесть. Существуют даже линии по расфасовке этого остатка.

Второе обязательное условие процесса переработки навоза в биогаз — это поддержание оптимальной температуры. Содержащиеся в биомассе бактерии, при низких температурах малоактивны. Они начинают действовать при температуре среды от +30 o C. Причем в навозе содержатся бактерии двух типов:


Термофильные установки с температурой от +43 o C до +52 o C являются наиболее эффективными: в них навоз обрабатывается 3 дня, на выходе с 1 литра полезной площади биореактора получается до 4,5 литров биогаза (это максимальный выход). Но на поддержание температуры в +50 o C требуются значительные расходы энергии, что не в каждом климате рентабельно. Потому чаще биогазовые установки работают на мезофильных температурах. В этом случае время переработки может составлять 12-30 дней, выход — примерно 2 литра биогаза на 1 литр объема биореактора.

Состав газа меняется в зависимости от сырья и условий переработки, но примерно он следующий: метан — 50-70%, двуокись углерода — 30-50%, а также содержится небольшое количество сероводорода (менее 1%) и совсем небольшой количество аммиака, водорода и соединений азота. В зависимости от конструкции установки в биогазе могут содержаться в значительном количестве пары воды, что потребует их осушения (в противном случае он просто не будет гореть). Как выглядит промышленная установка продемонстрировано в видео.

Это можно сказать целый завод по выработке газа. Но для частного подворья или небольшой фермы такие объемы ни к чему. Простейшую биогазовую установку легко сделать своими руками. Но вот вопрос: «Куда дальше направлять биогаз?» Теплота сгорания получаемого в результате газа от 5340 ккал/м3 до 6230 ккал/м3 (6,21 — 7,24 кВт.ч/м3). Потому его можно подавать на газовый котел для выработки тепла (отопление и горячая вода), или на установку по выработке электричества, на газовую печку и т.д. Вот как использует навоз от своей перепелиной фермы Владимир Рашин — конструктор биогазовой установки.

Получается, что имея хоть какое-то более-менее приличное количество скота и птицы, можно самому полностью обеспечить потребности своего хозяйства в тепле, газе и электричестве. А если установить на автомобили газовые установки, то и топливом для автопарка. Учитывая, что доля энергоносителей в себестоимости продукции 70-80% вы сможете только на биореакторе сэкономить, а потом и заработать множество денег. Ниже приведен скриншот экономического расчета рентабельности биогазовой установки для небольшого хозяйства (по состоянию на сентябрь 2014). Хозяйство мелким не назовешь, но и не крупное однозначно. Просим прощения за терминологию — это авторский стиль.

Это примерный расклад требуемых затрат и возможных доходов Схемы самодельных биогазовых установок

Схемы самодельных биогазовых установок

Простейшая схема биогазовой установки — это герметичная емкость — биореактор, в который сливается подготовленная жижа. Соответственно есть люк загрузки навоза и люк выгрузки переработанного сырья.

Простейшая схема биогазовой установки без «наворотов»

Емкость заполняется субстратом не полностью: 10-15% объема должно оставаться свободным для сбора газа. В крышку бака встраивается труба для отведения газа. Так как в полученном газе содержится довольно большое количество водяных паров, гореть в таком виде он не будет. Потому необходимо его для осушения пропустить через гидрозатвор. В этом нехитром устройстве большая часть водяного пара сконденсируется, и газ уже будет хорошо гореть. Потом газ желательно очистить от негорючего сероводорода и только потом его можно подавать в газгольдер — емкость для сбора газа. А оттуда уже можно разводить к потребителям: подавать на котел или газовую печь. Как сделать фильтры для биогазовой установки своими руками смотрите в видео.

Большие промышленные установки размещают на поверхности. И это, в принципе, понятно — слишком велики объемы земельных работ. Но в небольших хозяйствах чашу бункера закапывают в землю. Это во-первых, позволяет снизить затраты на поддержание требуемой температуры, а во-вторых, на частном подворье и так достаточно всяких устройств.

Емкость можно взять готовую, или в вырытом котловане сделать из кирпича, бетона и т.д. Но придется в этом случае позаботиться о герметичности и непроходимости воздуха: процесс анаэробный — без доступа воздуха, потому необходимо создать непроницаемую для кислорода прослойку. Сооружение получается многослойным и изготовление такого бункера длительный и затратный процесс. Потому дешевле и проще закопать готовую емкость. Раньше это обязательно были металлические бочки, часто из нержавейки. Сегодня с появлением на рынке емкостей из ПВХ можно использовать их. Они химически нейтральны, имеют низкую теплопроводность, длительный срок эксплуатации, и стоят в разы дешевле нержавеек.

Но описанная выше биогазовая установка будет иметь малую производительность. Для активизации процесса переработки необходимо активное перемешивание массы, находящейся в бункере. В противном случае на поверхности или в толще субстрата образуется корка, которая замедляет процесс разложения, газа на выходе получается меньше. Перемешивание проводится любым доступным способом. Например, таким, как продемонстрировано в видео. Привод при этом можно сделать любой.

Есть еще один способ перемешивания слоев, но немеханический — барбитация: вырабатываемый газ под давлением подают в нижнюю часть емкости с навозом. Поднимаясь вверх, пузырьки газа будут разбивать корку. Так как подается все тот же биогаз, то никаких изменений условий переработки не будет. Также этот газ нельзя считать расходом — он снова попадет в газгольдер.

Как говорилось выше, для хорошей производительности необходима повышенная температура. Чтобы не особенно тратиться на поддержание этой температуры необходимо позаботиться об утеплении. Какого типа теплоизолятор выбирать, конечно, дело ваше, но сегодня самый оптимальный — пенополистирол. Он не боится воды, не поражается грибками и грызунами, имеет длительный срок эксплуатации и отличные показатели по теплоизоляции.

Формы биореактора могут быть разные, но чаще всего встречается цилиндрическая. Она неидеальна с точки зрения сложности перемешивания субстрата, но используется чаще, потому что у людей накоплен большой опыт построения подобных емкостей. А если такой цилиндр разделить перегородкой, то можно использовать их как два отдельных резервуара, в которых процесс смещен по времени. При этом в перегородку можно встроить нагревательный элемент, таким образом решив проблему поддержания температуры сразу в двух камерах.

В самом простом варианте самодельные биогазовые установки — это прямоугольной формы яма, стенки которой сделаны из бетона, а для герметичности обработаны слоем стеклопластика и полиэфирной смолы. Такая емкость снабжается крышкой. Она крайне неудобна в эксплуатации: трудно реализуется и подогрев, перемешивание и отведение сбродившей массы, добиться полной переработки и высокой эффективности невозможно.

Чуть лучше обстоит дело с траншейными биогазовыми установками переработки навоза. Они имеют скошенные края, что облегчает загрузку свежего навоза. Если сделать дно под уклоном, то в одну сторону самотеком будет смещаться сбродившая масса и отбирать ее будет проще. В таких установках нужно предусмотреть теплоизоляцию не только стен, но и крышки. Подобная биогазовая установка своими руками реализуется несложно. Но полной переработки и максимального количества газа в ней не добиться. Даже при условии подогрева.

С основными техническими вопросами разбирались, и вы теперь знаете несколько способов того, как построить установку для получения биогаза из навоза. Остались технологические нюансы.

Что можно перерабатывать и как добиться хороших результатов

В навозе любого животного имеются необходимые для его переработки организмы. Было обнаружено, что в процессе сбраживания и в выработке газа участвует более тысячи различных микроорганизмов. Важнейшую роль при этом играют метанобразующие. Также считается, что все эти микроорганизмы в оптимальных пропорциях находятся в навозе КРС. Во всяком случае, при переработке этого вида отходов в сочетании с растительной массой, выделяется самое большое количество биогаза. В таблице приведены усредненные данные по наиболее распространенным видам сельскохозяйственных отходов. Примите во внимание, что такое количество газа на выходе можно получить при идеальных условиях.

Для хорошей продуктивности необходимо поддерживать определенную влажность субстрата: 85-90%. Но воду при этом нужно использовать не содержащую посторонних химических веществ. Негативно на процессы влияют растворители, антибиотики, моющие средства и т.д. Также для нормального протекания процесса в жиже не должны содержаться крупные фрагменты. Максимальные размеры фрагментов: 1*2 см, лучше более мелкие. Потому если вы планируете добавлять растительные ингредиенты, то необходимо их измельчать.

Важно для нормальной переработки в субстрате поддерживать оптимальный уровень рН: в пределах 6,7-7,6. Обычно среда имеет нормальную кислотность, и лишь изредка кислотообразующие бактерии развиваются быстрее метанобразующих. Тогда среда становится кислой, выработка газа снижается. Для достижения оптимального значения в субстрат добавляют обычную известь или соду.

Теперь немного о времени, которое необходимо на переработку навоза. Вообще время зависит от созданных условий, но первый газ может начать поступать уже на третьи сутки после начала сбраживания. Наиболее активно газообразование происходит при разложении навоза на 30-33%. Чтобы можно было ориентироваться по времени, скажем, что через две недели субстрат разлагается на 20-25%. То есть, оптимально переработка должна продолжаться месяц. В этом случае и удобрение получается наиболее качественным.

Расчет объема бункера для переработки

Для небольших хозяйств оптимальной является установка постоянного действия — это когда свежий навоз поступает небольшими порциями ежедневно и такими же порциями удаляется. Для того чтобы процесс не нарушался доля ежесуточной загрузки не должна превышать 5% от перерабатываемого объема.

Самодельные установки по переработке навоза в биогаз — не вершина совершенства, но достаточно эффективны

Исходя из этого, вы легко определите требуемый объем резервуара для самодельной биогазовой установки. Вам нужно суточный объем навоза с вашего хозяйства (уже в разведенном состоянии с влажностью 85-90%) умножить на 20 (это для мезофильных температур, для термофильных придется умножать на 30). К полученной цифре нужно добавить еще 15-20% — свободное пространство для сбора биогаза под куполом. Основной параметр вы знаете. Все дальнейшие расходы и параметры системы зависят от того, какая схема биогазовой установки выбрана для реализации и как вы все будете делать. Вполне можно обойтись подручными материалами, а можно заказать установку «под ключ». Заводские разработки обойдется от 1,5 млн. евро, установки от «Кулибиных» будут дешевле.

Юридическое оформление

Согласовывать установку придется с СЭС, газовой инспекцией и пожарниками. Вам понадобятся:

  • Технологическая схема установки.
  • План размещения оборудования и составляющих с привязкой самой установки, местом установки теплового агрегата, места прокладки трубопроводов и энергомагистралей, подключения насоса. На схеме должны быть обозначены громоотвод и подъездные пути.
  • Если установка будет находиться в помещении, то необходим также будет план вентиляции, которая будет обеспечивать не менее чем восьмикратный обмен всего воздуха в помещении.

Как видим, без бюрократии и тут не обойтись.

Напоследок немного о производительности установки. В среднем за сутки биогазовая установка выдает объем газа в два раза превышающий полезный объем резервуара. То есть, 40 м 3 навозной жижи дадут в сутки 80 м 3 газа. Примерно 30% уйдет на обеспечение самого процесса (главная статья расходов — подогрев). Т.е. на выходе вы получите 56 м 3 биогаза в день. Для покрытия потребностей семьи из трех человек и на отопление среднего по размерам дома требуется по статистике 10 м 3 . В чистом остатке у вас 46 м 3 в день. И это при небольшой установке.

Итоги

Вложив некоторое количество средств в устройство биогазовой установки (своими руками или под ключ), вы не только обеспечите собственные нужды и потребности в тепле и газе, но и сможете продавать газ, а также получающиеся в результате переработки высококачественные удобрения.

Вопрос получения метана интересен тем владельцам частных хозяйств, кто занимается разведением птицы или свиней, а также держит крупнорогатый скот. Как правило, в таких хозяйствах вырабатывается значительное количество органических отходов жизнедеятельности животных, они-то и могут принести немалую пользу, став источником дешевого топлива. Цель данного материала – рассказать, как добыть биогаз в домашних условиях, используя эти самые отходы.

Общие сведения о биогазе

Получаемый из различного навоза и птичьего помета домашний биогаз большей частью состоит из метана. Там его от 50 до 80% в зависимости от того, чьи отходы жизнедеятельности использовались для производства. Того самого метана, что горит в наших плитах и котлах, и за который мы платим порой немалые деньги согласно показаниям счетчика.

Чтобы дать представление о количестве горючего, что теоретически можно добыть при содержании животных дома или на даче, представим таблицу с данными о выходе биогаза и содержании в нем чистого метана:

Как можно понять из таблицы, для эффективного производства газа из коровьего навоза и силосных отходов понадобится довольно большое количество сырья. Выгоднее добывать горючее из навоза свиней и помета индюков.

Оставшаяся доля веществ (25-45%), из которых состоит домашний биогаз, приходится на углекислый газ (до 43%) и сероводород (1%). Также в составе горючего присутствует азот, аммиак и кислород, но в незначительных количествах. Кстати, именно благодаря выделению сероводорода и аммиака навозная куча издает такой знакомый «приятный» запах. Что касается энергетического содержания, то 1 м3 метана теоретически может выделить при сжигании до 25 МДж (6.95 кВт) тепловой энергии. Удельная теплота сгорания биогаза зависит от доли метана в его составе.

Для справки. На практике проверено, что для обогрева утепленного дома, находящегося в средней полосе, потребно около 45 м3 биологического горючего на 1 м2 площади за отопительный сезон.

Природой устроено так, что биогаз из навоза образуется самопроизвольно и независимо от того, хотим его получать или нет. Навозная куча перегнивает в течение года – полутора, просто находясь на открытом воздухе и даже при отрицательной температуре. Все это время она выделяет биогаз, но только в небольших количествах, поскольку процесс растянут во времени. Причиной служат сотни видов микроорганизмов, находящихся в экскрементах животных. То есть, для начала газовыделения ничего не нужно, оно будет происходить самостоятельно. А вот для оптимизации процесса и его ускорения потребуется специальное оборудование, о чем пойдет речь далее.

Технология получения биогаза

Суть эффективного производства - ускорение природного процесса разложения органического сырья. Для этого находящимся в нем бактериям необходимо создать наилучшие условия для размножения и переработки отходов. И первое условие – поместить сырье в закрытую емкость – реактор, иначе - генератор биогаза. Отходы измельчаются и перемешиваются в реакторе с расчетным количеством чистой воды до получения исходного субстрата.

Примечание. Чистая вода необходима для того, чтобы в субстрат не попали вещества, пагубно влияющие на жизнедеятельность бактерий. Как следствие, процесс брожения может сильно замедлиться.

Промышленная установка по производству биогаза оборудована подогревом субстрата, средствами перемешивания и контроля над кислотностью среды. Перемешивание выполняется с целью удалить с поверхности твердую корку, что возникает во время брожения и мешает выделению биогаза. Длительность технологического процесса – не менее 15 дней, за это время степень разложения достигает 25%. Считается, что максимальный выход горючего происходит до 33% разложения биомассы.

Технологией предусматривается ежедневное обновление субстрата, так обеспечивается интенсивное получение газа из навоза, в промышленных установках оно исчисляется сотнями кубических метров в день. Часть отработанной массы в размере порядка 5% от общего объема удаляется из реактора, а на ее место загружается столько же свежего биологического сырья. Отработанный материал используется в качестве органического удобрения полей.

Схема биогазовой установки

Получая биогаз в домашних условиях, невозможно создать столь благоприятные условия для микроорганизмов, как в промышленном производстве. И в первую очередь это утверждение касается организации подогрева генератора. Как известно, это требует затрат энергии, что ведет к существенному удорожанию себестоимости горючего. Контролировать соблюдение слабощелочной среды, присущей процессу брожения, вполне возможно. Только как ее корректировать в случае отклонений? Снова затраты.

Владельцам частных хозяйств, желающим добывать биогаз своими руками, рекомендуется изготовить реактор простой конструкции из доступных материалов, а потом его модернизировать в силу своих возможностей. Что надо сделать:

  • герметично закрывающуюся емкость объемом не менее 1 м3. Разные баки и бочки малых размеров тоже подойдут, но горючего из них будет выделяться мало из-за недостаточного количества сырья. Такие объемы производства вас не устроят;
  • организовывая производство биогаза в домашних условиях, вы вряд ли станете делать подогрев емкости, а вот утеплить ее нужно обязательно. Другой вариант – заглубить реактор в землю, выполнив тепловую изоляцию верхней части;
  • установить в реакторе ручную мешалку любой конструкции, выведя рукоятку через верхнюю крышку. Узел прохода ручки должен быть герметичным;
  • предусмотреть патрубки для подачи и выгрузки субстрата, а также для отбора биогаза.

Ниже показана схема биогазовой установки, размещенной ниже уровня земли:

1 – генератор горючего (емкость из металла, пластика или бетона); 2 — бункер для заливки субстрата; 3 – технический люк; 4 – сосуд, играющий роль водяного затвора; 5 – патрубок выгрузки отработанных отходов; 6 – патрубок отбора биогаза.

Как получить биогаз в домашних условиях?

Операция первая – измельчение отходов до фракции, чей размер не более 10 мм. Так гораздо легче приготовить субстрат, да и бактериям будет проще перерабатывать сырье. Получившаяся масса тщательно перемешивается с водой, ее количество – около 0.7 л на 1 кг органики. Как уже сказано выше, воду следует использовать только чистую. Затем субстратом заполняется биогазовая установка, сделанная своими руками, после чего реактор герметично закрывается.

Несколько раз в течении дня надо наведываться к емкости, чтобы перемешать содержимое. На 5-й день можно проверять наличие газа, и буде он появится, периодически откачивать его компрессором в баллон. Если этого вовремя не делать, то давление внутри реактора возрастет и брожение замедлится, а то и остановится вовсе. Спустя 15 дней надо производить выгрузку части субстрата и добавление такого же количество нового. Подробности можно узнать, просмотрев видео:

Заключение

Вполне вероятно, что простейшая установка для получения биогаза не обеспечит все ваши потребности. Но, учитывая нынешнюю стоимость энергоресурсов, это уже будет немалым подспорьем в домашнем хозяйстве, ведь за исходное сырье вам платить не приходится. Со временем, плотно занимаясь производством, вы сможете уловить все особенности и провести необходимое усовершенствование установки.

http :// www .74 rif . ru / biogaz - konst . html Информационный центр
поддержки предпринимательства
в мире топливных и автомобильных технологий

Выход биогаза и содержание метана

Выход биогаза обычно подсчитывается в литрах или кубических метрах на килограмм сухого вещества, содержащегося в навозе. В таблице показаны значения выхода биогаза на килограмм сухого вещества для разных видов сырья после 10-20 дней ферментации при мезофильной температуре.

Для определения выхода биогаза из свежего сырья с помощью таблицы сначала нужно определить влажность свежего сырья. Для этого можно взять килограмм свежего навоза, высушить его и взвесить сухой остаток. Влажность навоза в процентах можно подсчитать по формуле: (1 - вес высушенного навоза)х100%.


Тип сырья

Выход газа (м 3 на килограмм сухого вещества)

Содержание метана (%)

А. навоз животных

Навоз КРС

0,250 - 0,340

65

Свиной навоз

0,340 - 0,580

65 - 70

Птичий помет

0,310 - 0,620

60

Конский навоз

0,200 - 0,300

56 - 60

Овечий навоз

0,300 - 620

70

Б. Отходы хозяйства

Сточные воды, фекалии

0,310 - 0,740

70

Овощные отходы

0,330 - 0,500

50-70

Картофельная ботва

0,280 - 0,490

60 - 75

Свекольная ботва

0,400 - 0,500

85

С. Растительные сухие отходы

Пшеничная солома

0,200 - 0,300

50 - 60

Солома ржи

0,200 - 0,300

59

Ячменная солома

0,250 - 0,300

59

Овсяная солома

0,290 - 0,310

59

Кукурузная солома

0,380 - 0,460

59

Лен

0,360

59

Конопля

0,360

59

Свекольный жом

0,165

Листья подсолнечника

0,300

59

Клевер

0,430 - 0,490

D. Другое

Трава

0,280 - 0,630

70

Листва деревьев

0,210 - 0,290

58

Выход биогаза и содержание в нем метана при использовании разных типов сырья

Подсчитать, какое количество свежего навоза с определенной влажностью будет соответствовать 1 кг сухого вещества, можно следующим образом: от 100 отнимаем значение влажности навоза в процентах, а затем делим 100 на это значение:

100: (100% - влажность в %).


Пример 1.

Если вы определили, что влажность используемого в качестве сырья навоза КРС равна 85%. то 1 килограмм сухого вещества будет соответствовать 100:(100-85) = около 6,6 килограмма свежего навоза. Значит, с 6.6 килограмма свежего навоза мы получаем 0,250 - 0,320 м 3 биогаза: а с 1 килограмма свежего навоза КРС можно получить в 6.6 раза меньше: 0.037 - 0,048 м 3 биогаза.

Пример 2.

Вы определили влажность свиного навоза - 80%, значит, 1 килограмм сухого вещества будет равен 5 килограммам свежего свиного навоза.
Из таблицы мы знаем, что 1 килограмм сухого вещества или 5 кг свежего свиного навоза выделяет 0,340 - 0,580 м 3 биогаза. Значит, 1 килограмм свежего свиного навоза выделяет 0,068-0,116 м 3 биогаза.

Примерные значения

Если известен вес суточного свежего навоза, то суточный выход биогаза будет примерно следующим:

1 тонна навоза КРС - 40-50 м 3 биогаза;
1 тонна свиного навоза - 70-80 м 3 биогаза;
1 тонна птичьего помета - 60 -70 м 3 биогаза. Нужно помнить, что примерные значения приводятся для готового сырья влажностью 85% - 92%.

Вес биогаза

Объемный вес биогаза составляет 1,2 кг на 1 м 3 , поэтому при подсчете количества получаемых удобрений необходимо вычитать его из количества перерабатываемого сырья.

Для среднесуточной загрузки 55 кг сырья и дневном выходе биогаза 2,2 - 2.7 м 3 на голову КРС масса сырья уменьшится на 4 - 5% в процессе переработки его в биогазовой установке.

Оптимизация процесса получения биогаза

Кислотообразующие и метанобразующие бактерии встречаются в природе повсеместно, в частности в экскрементах животных. В пищеварительной системе крупного рогатого скота содержится полный набор микроорганизмов, необходимых для сбраживания навоза. Поэтому навоз КРС часто применяют в качестве сырья, загружаемого в новый реактор. Для начала процесса сбраживания достаточно обеспечить следующие условия:

Поддержка анаэробных условий в реакторе

Жизнедеятельность метанообразующих бактерий возможна только при отсутствии кислорода в реакторе биогазовой установки, поэтому нужно следить за герметичностью реактора и отсутствием доступа в реактор кислорода.

Соблюдение температурного режима

Поддержка оптимальной температуры является одним из важнейших факторов процесса сбраживания. В природных условиях образование биогаза происходит при температурах от 0°С до 97°С, но с учетом оптимизации процесса переработки органических отходов для получения биогаза и биоудобрений выделяют три температурных режима:

Психофильный температурный режим определяется температурами до 20 - 25°С,
мезофильный температурный режим определяется температурами от 25°С до 40°С и
термофильный температурный режим определяется температурами свыше 40°С.

Степень бактериологического производства метана увеличивается с увеличением температуры. Но, так как количество свободного аммиака тоже увеличивается с ростом температуры, процесс сбраживания может замедлиться. Биогазовые установки без подогрева реактора демонстрируют удовлетворительную производительность только при среднегодовой температуре около 20°С или выше или когда средняя дневная температура достигает по меньшей мере 18°С. При средних температурах в 20-28°С производство газа непропорционально увеличивается. Если же температура биомассы менее 15°С, выход газа будет так низок, что биогазовая установка без теплоизоляции и подогрева перестает быть экономически выгодной.

Сведения относительно оптимального температурного режима различны для разных видов сырья. Для биогазовых установок работающих на смешанном навозе КРС, свиней и птиц, оптимальной температурой для мезофильного температурного режима является 34 - 37°С, а для термофильного 52 - 54°С. Психофильный температурный режим соблюдается в установках без подогрева, в которых отсутствует контроль за температурой. Наиболее интенсивное выделение биогаза в психофильном режиме происходит при 23°С.

Процесс биометанации очень чувствителен к изменениям температуры. Степень этой чувствительности в свою очередь зависит от температурных рамок, в которых происходит переработка сырья. При процессе ферментации могут быть допустимы изменения температуры в пределах:


психофильный температурный режим: ± 2°С в час;
мезофильный температурный режим: ± 1°С в час;
термофильный температурный режим: ± 0,5°С в час.

На практике более распространены два температурных режима, это термофильный и мезофильный. У каждого из них есть свои достоинства и недостатки. Преимущества термофильного процесса сбраживания это повышенная скорость разложения сырья, и следовательно более высокий выход биогаза, а также практически полное уничтожение болезнетворных бактерий, содержащихся в сырье. К недостаткам термофильного разложения можно отнести; большое количество энергии, требуемое на подогрев сырья в реакторе, чувствительность процесса сбраживания к минимальным изменениям температуры и несколько более низкое качество получаемых биоудобрений .

При мезофильном режиме сбраживания сохраняется высокий аминокислотный состав биоудобрений, но обеззараживание сырья не такое полное, как при термофильном режиме.

Доступность питательных веществ

Для роста и жизнедеятельности метановых бактерий (с помощью которых производится биогаз) необходимо наличие в сырье органических и минеральных питательных веществ. В дополнение к углероду и водороду создание биоудобрений требует достаточного количество азота, серы, фосфора, калия, кальция и магния и некоторого количества микроэлементов - железа, марганца, молибдена, цинка, кобальта, селена, вольфрама, никеля и других. Обычное органическое сырье - навоз животных - содержит достаточное количество вышеупомянутых элементов.

Время сбраживания

Оптимальное время сбраживания зависит от дозы загрузки реактора и температуры процесса сбраживания. Если время сбраживания выбрано слишком коротким, то при выгрузке сброженной биомассы бактерии из реактора вымываются быстрее, чем могут размножаться, и процесс ферментации практически останавливается. Слишком продолжительное выдерживание сырья в реакторе не отвечает задачам получения наибольшего количества биогаза и биоудобрений за определенный промежуток времени.

При определении оптимальной продолжительности сбраживания пользуются термином "время оборота реактора". Время оборота реактора - это то время, в течение которого свежее сырье, загруженное в реактор, перерабатывается, и его выгружают из реактора.

Для систем с непрерывной загрузкой среднее время сбраживания определяется отношением объема реактора к ежедневному объему загружаемого сырья. На практике время оборота реактора выбирают в зависимости от температуры сбраживания и состава сырья в следующих интервалах:

Психофильный температурный режим: от 30 до 40 и более суток;
мезофильный температурный режим: от 10 до 20 суток;
термофильный температурный режим: от 5 до 10 суток.

Суточная доза загрузки сырья определяется временем оборота реактора и увеличивается (как и выход биогаза) с увеличением температуры в реакторе. Если время оборота реактора составляет 10 суток: то суточная доля загрузки будет составлять 1/10 от общего объема загружаемого сырья. Если время оборота реактора составляет 20 суток, то суточная доля загрузки будет составлять 1/20 от общего объема загружаемого сырья. Для установок, работающих в термофильном режиме, доля загрузки может составить до 1/5 от общего объема загрузки реактора.

Выбор времени сбраживания зависит также и от типа перерабатываемого сырья. Для следующих видов сырья, перерабатываемого в условиях мезофильного температурного режима, время, за которое выделяется наибольшая часть биогаза, равно примерно:

Жидкий навоз КРС: 10 -15 дней;


жидкий свиной навоз: 9 -12 дней;
жидкий куриный помет: 10-15 дней;
навоз, смешанный с растительными отходами: 40-80 дней.

Кислотно-щелочной баланс

Метанопродуцирующие бактерии лучше всего приспособлены для существования в нейтральных или слегка щелочных условиях. В процессе метанового брожения второй этап производства биогаза является фазой активного действия кислотных бактерий. В это время уровень рН снижается, то есть среда становится более кислой.

Однако при нормальном ходе процесса жизнедеятельность разных групп бактерий в реакторе проходит одинаково эффективно и кислоты перерабатываются метановыми бактериями. Оптимальное значение pH колеблется в зависимости от сырья от 6,5 да 8,5.

Измерить уровень кислотно-щелочного баланса можно с помощью лакмусовой бумаги. Значения кислотно-щелочного баланса будут соответствовать цвету: приобретаемому бумагой при её погружении в сбраживаемое сырье.

Содержание углерода и азота

Одним из наиболее важных факторов, влияющих на метановое брожение (выделение биогаза), является соотношение углерода и азота в перерабатываемом сырье. Если соотношение C/N чрезмерно велико, то недостаток азота будет служить фактором, ограничивающим процесс метанового брожения. Если же это соотношение слишком мало, то образуется такое большое количество аммиака, что он становится токсичным для бактерий.

Микроорганизмы нуждаются как в азоте, так и в углероде для ассимиляции в их клеточную структуру. Различные эксперименты показали: выход биогаза наибольший при уровне соотношения углерода и азота от 10 до 20, где оптимум колеблется в зависимости от типа сырья. Для достижения высокой продукции биогаза практикуется смешивание сырья для достижения оптимального соотношения C/N.


Биоферментируемый материал

Азот N(%)

Соотношение углерода и азота C/N

А. Навоз животных

КРС

1,7 - 1,8

16,6 - 25

Куриный

3,7 - 6,3

7,3 - 9,65

Конский

2,3

25

Свиной

3,8

6,2 - 12,5

Овечий

3,8

33

B. Растительные сухие отходы

Кукурузные початки

1,2

56,6

Солома зерновых

1

49,9

Пшеничная солома

0,5

100 - 150

Кукурузная солома

0,8

50

Овсяная солома

1,1

50

Соя

1,3

33

Люцерна

2,8

16,6 - 17

Свекольный жом

0,3 - 0,4

140 - 150

С. Другое

Трава

4

12

Опилки

0,1

200 - 500

Опавшая листва

1

50

Выбор влажности сырья

Беспрепятственный обмен веществ в сырье является предпосылкой для высокой активности бактерий. Это возможно только в том случае, когда вязкость сырья допускает свободное движение бактерий и газовых пузырьков между жидкостью и содержащимися в ней твердыми веществами. В отходах сельскохозяйственного производства имеются разные твердые частицы.

Твердые частицы, например, песок, глина и др. обуславливают образование осадка. Более легкие материалы поднимаются на поверхность сырья и образуют корку. Это приводит к уменьшению ообразования биогаза. Поэтому рекомендуется тщательно измельчать перед загрузкой в реактор растительные остатки - солому: и др. , и стремиться к отсутствию твердых веществ в сырье.



Виды животных

Среднесут. кол-во навоза, кг/сутки

Влажность навоза (%)

Среднесут. кол-тво экскрементов (кг/сутки)

Влажность экскрементов (%)

КРС

36

65

55

86

Свиньи

4

65

5,1

86

Птица

0,16

75

0,17

75

Количество и влажность навоза и экскрементов на одно животное


Влажность сырья, загружаемого в реактор установки, должна быть не менее 85% в зимнее время и 92% в летнее время года. Для достижения правильной влажности сырья навоз обычно разбавляют горячей водой в количестве, определяемом по формуле: OB = Нx((В 2 - В 1):(100 - В 2)), где Н-количество загружаемого навоза. В 1 - первоначальная влажность навоза, В 2 - необходимая влажность сырья, ОВ - количество воды в литрах. В таблице приводится необходимое количество воды для разбавления 100 кг навоза до 85% и 92% влажности.


Количество воды для достижения необходимой влажности на 100 кг навоза

Регулярное перемешивание

Для эффективной работы биогазовой установки и поддерживания стабильности процесса сбраживания сырья внутри реактора необходимо периодическое перемешивание. Главными целями перемешивания являются:

Высвобождение произведенного биогаза;
перемешивание свежего субстрата и популяции бактерий (прививка):
предотвращение формирования корки и осадка;
предотвращение участков разной температуры внутри реактора;
обеспечение равномерного распределения популяции бактерий:
предотвращение формирования пустот и скоплений, уменьшающих эффективную площадь реактора.

При выборе подходящего способа и метода перемешивания нужно учитывать, что процесс сбраживания представляет собой симбиоз между различными штаммами бактерий, то есть бактерии одного вида могут питать другой вид. Когда сообщество разбивается, процесс ферментации будет непродуктивным до того, как образуется новое сообщество бактерий. Поэтому слишком частое или продолжительное и интенсивное перемешивание вредно. Рекомендуется медленно перемешивать сырье через каждые 4-6 часов.

Ингибиторы процесса

Сбраживаемая органическая масса не должна содержать веществ (антибиотики, растворители и т. п.), отрицательно влияющих на жизнедеятельность микроорганизмов, они замедляют а иногда и прекращают процесс выделения биогаза. Не способствуют "работе" микроорганизмов и некоторые неорганические вещества, поэтому нельзя, например, использовать для разбавления навоза воду, оставшуюся после стирки белья синтетическими моющими средствами.

На каждый из различных типов бактерий, участвующих в трех стадиях метанообразования, эти параметры влияют по-разному. Существует также тесная взаимозависимость между параметрами (например, выбор времени сбраживания зависит от температурного режима), поэтому сложно определить точное влияние каждого фактора на количество образующегося биогаза.

В этой статье: история применения биогаза; состав биогаза; как повысить содержание метана в биогазе; температурные режимы при получении биогаза из органического субстрата; типы биогазовых установок; форма и место размещения биореактора, а также ряд других важных моментов в создании биореакторной установки своими руками.

Среди важных составляющих нашей жизни большое значение имеют энергоносители, цены на которые растут чуть ли не каждый месяц. Каждый зимний сезон пробивает брешь в семейных бюджетах, заставляя нести расходы на отопление, а значит, на топливо для отопительных котлов и печей. А как быть, ведь электроэнергия, газ, уголь или дрова стоят денег, и чем более удалены наши жилища от крупных энергетических магистралей, тем дороже обойдётся их обогрев. Между тем альтернативное отопление, независимое от каких-либо поставщиков и тарифов, можно построить на биогазе, добыча которого не требует ни геологоразведки, ни бурения скважин, ни дорогостоящего насосного оборудования.

Биогаз можно получить практически в домашних условиях, понеся при этом минимальные, быстро окупаемые затраты — много информации по этому вопросу вы найдёте в нашей статье.

Отопление биогазом — история

Интерес к горючему газу, образующемуся на болотах в тёплый сезон года, возник ещё у наших далеких предков — передовые культуры Индии, Китая, Персии и Ассирии экспериментировали с биогазом свыше 3 тысячелетий назад. В те же древние времена в родоплеменной Европе швабы-алеманны заметили, что выделяемый на болотах газ отлично горит — они использовали его в отоплении своих хижин, подводя к ним газ по кожаным трубам и сжигая в очагах. Швабы считали биогаз «дыханием драконов», которые, по их мнению, жили в болотах.

Спустя века и тысячелетия, биогаз пережил второе своё открытие — в 17-18 веках сразу два европейских учёных обратили на него внимание. Известный химик своего времени Ян Баптиста ван Гельмонт установил, что при разложении любой биомассы образуется горючий газ, а прославленный физик и химик Алессандро Вольта установил прямую зависимость между количеством биомассы, в которой идут процессы разложения, и количеством выделяемого биогаза. В 1804 году английский химик Джон Дальтон открыл формулу метана, а четырьмя годами позже англичанин Гемфри Дэви обнаружил его в составе болотного газа.

Слева: Ян Баптиста ван Гельмонт. Справа: Алессандро Вольта

Интерес к практическому применению биогаза возник с развитием газового освещения улиц — в конце 19-го века улицы одного района английского города Эксетера освещались газом, полученным из коллектора со сточными водами.

В 20-м веке потребность в энергоносителях, вызванная Второй мировой войной, вынудила европейцев искать альтернативные источники энергии. Биогазовые установки, в которых газ вырабатывался из навоза, распространились в Германии и Франции, частично в Восточной Европе. Однако после победы стран антигитлеровской коалиции о биогазе забыли — электроэнергия, природный газ и нефтепродукты полностью покрыли потребности производств и населения.

В СССР технология получения биогаза рассматривалась в основном с академической точки зрения и не считалась сколько-нибудь востребованной.

Сегодня отношение к альтернативным источникам энергии резко изменилось — они стали интересны, поскольку стоимость привычных энергоносителей возрастает год от года. По своей сути биогаз — реальный способ уйти от тарифов и расходов на классические энергоносители, получить свой собственный источник топлива, причём на любые цели и в достаточном количестве.

Наибольшее количество биогазовых установок создано и эксплуатируется в Китае: 40 миллионов установок средней и малой мощности, объём производимого метана — около 27 млрд м 3 за год.

Биогаз — что это

Это газовая смесь, состоящая в основном из метана (содержание от 50 до 85%), углекислого газа (содержание от 15 до 50%) и прочих газов в гораздо меньшем процентном содержании. Биогаз производит команда из трёх видов бактерий, питающихся биомассой — гидролизные бактерии, производящие пищу для кислотообразующих бактерий, которые в свою очередь снабжают пищей метанобразующие бактерии, формирующие биогаз.

Ферментация исходного органического материала (к примеру, навоза), продуктом которой и будет биогаз, проходит без доступа внешней атмосферы и называется анаэробной. Другой продукт такой ферментации, называемый компостным перегноем, хорошо известен сельским жителям, применяющим его для удобрения полей и огородов, а вот производимые в компостных кучах биогаз и тепловая энергия обычно не используются — и напрасно!

От каких факторов зависит выход биогаза с более высоким содержанием метана

Прежде всего — от температуры. Активность бактерий, ферментирующих органику, тем выше, чем выше температура окружающей их среды, при минусовых температурах ферментация замедляется или прекращается полностью. По этой причине выработка биогаза более всего распространена в странах Африки и Азии, расположенных субтропиках и тропиках. В климате России получение биогаза и полный переход на него, как на альтернативное топливо, потребует теплоизоляции биореактора и введение тёплой воды в массу органики, когда температура внешней атмосферы опускается ниже нулевой отметки.

Органический материал, закладываемый в биореактор, должен быть биологически разлагаемым, требуется вводить в него значительное количество воды — до 90% от массы органики. Важным моментом будет нейтральность органической среды, отсутствие в её составе компонентов, препятствующих развитию бактерий, вроде чистящих и моющих веществ, любых антибиотиков. Биогаз можно получить практически из любых отходов хозяйственного и растительного происхождения, сточных вод, навоза и т. д.

Процесс анаэробной ферментации органики лучше всего проходит, когда значение pH находится в диапазоне 6,8-8,0 — большая кислотность замедлит формирование биогаза, т. к. бактерии будут заняты потреблением кислот и производством углекислого газа, нейтрализующего кислотность.

Соотношение азота и углерода в биореакторе необходимо рассчитать, как 1 к 30 — в этом случае бактерии получат необходимое им количество углекислого газа, а содержание метана в биогаза будет наивысшим.

Лучший выход биогаза с достаточно высоким содержанием метана достигается, если температура в ферментируемой органике находится в диапазоне 32-35 °С, при более низких и более высоких значениях в биогазе увеличивается содержание двуокиси углерода, его качество падает. Бактерии, производящие метан, подразделяются на три группы: психрофильные, эффективны при температурах от +5 до +20 °С; мезофильные, их температурный режим от +30 до +42 °С; термофильные, работающие в режиме от +54 до +56 °С. Для потребителя биогаза наибольший интерес представляют мезофильные и термофильные бактерии, ферментирующие органику при большем выходе газа.

Мезофильная ферментация менее чувствительная к изменениям температурного режима на пару градусов от оптимального диапазона температур, требует меньших затрат энергии на обогрев органического материала в биореакторе. Её минусы, по сравнению с термофильной ферментацией, в меньшем выходе газа, большем сроке полной переработки органического субстрата (около 25 дней), разложенный в результате органический материал может содержать вредоносную флору, т. к. невысокая температура в биореакторе не обеспечивает 100% стерильности.

Подъём и поддержание внутриреакторной температуры на уровне, приемлемом для термофильных бактерий, обеспечит наибольший выход биогаза, полная ферментация органики пройдёт за 12 дней, продукты разложения органического субстрата полностью стерильны. Отрицательные характеристики: выход за пределы приемлемого для термофильных бактерий диапазона температур на 2 градуса понизит выход газа; высокая потребность в обогреве, как следствие — значительные затраты энергоносителей.

Содержимое биореактора необходимо промешивать с периодичностью 2 раза за день, иначе на его поверхности образуется корка, создающая преграду для биогаза. Помимо её устранения промешивание позволяет выровнять температуру и уровень кислотности внутри органической массы.

В биореакторах непрерывного цикла наибольший выход биогаза происходит при одновременной выгрузке органики, прошедшей ферментацию, и загрузке новой органики в количестве, равном выгружаемому объёму. В небольших биореакторах, что обычно используют в дачных хозяйствах, каждые сутки необходимо извлекать и вносить органику в объёме, примерно равном 5% от внутреннего объёма камеры ферментации.

Выход биогаза напрямую зависит от типа органического субстрата, закладываемого в биореактор (ниже приведены средние данные на кг веса сухого субстрата):

  • навоз конский даёт 0,27 м 3 биогаза, содержание метана 57%;
  • навоз КРС (крупного рогатого скота) даёт 0,3 м 3 биогаза, содержание метана 65%;
  • свежий навоз КРС даёт 0,05 м 3 биогаза с 68% содержанием метана;
  • куриный помёт — 0,5 м 3 , содержание метана в нём составит 60%;
  • свиной навоз — 0,57 м 3 , доля метана составит 70%;
  • овечий навоз — 0,6 м 3 с содержанием метана 70%;
  • солома пшеницы — 0,27 м 3 , с 58% содержанием метана;
  • солома кукурузы — 0,45 м 3 , содержание метана 58%;
  • трава — 0,55 м 3 , с 70% содержанием метана;
  • древесная листва — 0,27 м 3 , доля метана 58%;
  • жир — 1,3 м 3 , содержание метана 88%.

Биогазовые установки

Эти устройства состоят из следующих основных элементов — реактор, бункер загрузки органики, отвод биогаза, бункер выгрузки ферментированной органики.

По типу конструкции биогазовые установки бывают следующих типов:

  • без обогрева и без промешивания ферментируемой органики в реакторе;
  • без обогрева, но с промешиванием органической массы;
  • с обогревом и промешиванием;
  • с обогревом, промешиванием и приборам, позволяющими контролировать и управлять процессом ферментации.

Биогазовая установка первого типа подходит для небольшого хозяйства и рассчитана на психрофильные бактерии: внутренний объём биореактора 1-10 м 3 (переработка 50-200 кг навоза за сутки), минимальная комплектация, полученный биогаз не хранится — сразу поступает к потребляющим его бытовым приборам. Такую установку можно использовать только в южных районах, она рассчитана на внутреннюю температуру 5-20 °С. Удаление ферментированной органики производится одновременно с загрузкой новой партии, отгрузка выполняется в ёмкость, объём которой должен быть равным или больше внутреннего объёма биореактора. Содержимое ёмкости храниться в ней до введения в удобряемую почву.

Конструкция второго типа также рассчитана на небольшое хозяйство, её производительность несколько выше биогазовых установок первого типа — в оснащение входит перемешивающее устройство с ручным или механическим приводом.

Третий тип биогазовых установок оснащён помимо промешивающего устройства принудительным обогревом биореактора, водогрейный котёл при этом работает на альтернативном топливе, производимом биогазовой установкой. Выработкой метана в таких установках занимаются мезофильные и термофильные бактерии, в зависимости от интенсивности обогрева и уровня температуры в реакторе.

Принципиальная схема биогазовой установки: 1 — подогрев субстрата; 2 — заливная горловина; 3 — ёмкость биореактора; 4 — ручная мешалка; 5 — ёмкость для сборки конденсата; 6 — газовый клапан; 7 — резервуар для переработанной массы; 8 — предохранительный клапан; 9 — фильтр; 10 — газовый котёл; 11 — газовый вентиль; 12 — газовые потребители; 13 — гидрозатвор

Последний тип биогазовых установок наиболее сложен и рассчитан на нескольких потребителей биогаза, в конструкцию установок вводятся электроконтактный манометр, предохранительный клапан, водогрейный котёл, компрессор (пневматическое промешивание органики), ресивер, газгольдер, газовый редуктор, отвод для загрузки биогаза в транспорт. Эти установки работают непрерывно, допускают установку любого из трёх температурных режимов благодаря точно настраиваемому обогреву, отбор биогаза выполняется в автоматическом режиме.

Биогазовая установка своими руками

Теплотворность биогаза, произведённого в биогазовых установках, примерно равна 5 500 ккал/м 3 , что немногим ниже калорийности природного газа (7 000 ккал/м 3). Для отопления 50 м 2 жилого дома и использования газовой плиты с четырьмя конфорками в течение часа потребуется в среднем 4 м 3 биогаза.

Предлагаемые на рынке России промышленные установки по производству биогаза стоят от 200 000 руб. — при их внешне высокой стоимости стоит отметить, что эти установки точно рассчитаны по объёму загружаемого органического субстрата и на них распространяются гарантии производителей.

Если же вы хотите создать биогазовую установку самостоятельно, то дальнейшая информация — для вас!

Форма биореактора

Наилучшая форма для него будет овальной (яйцеобразной), однако соорудить такой реактор крайне сложно. Более лёгким для конструирования будет биореактор цилиндрической формы, верхняя и нижняя части которого выполнены в виде конуса или полукруга. Реакторы квадратной или прямоугольной формы из кирпича или бетона будут малоэффективны, т. к. по углам в них со временем образуются трещины, вызванные давлением субстрата, в них также будут накапливаться затвердевшие фрагменты органики, мешающие процессу ферментации.

Стальные ёмкости биореакторов герметичны, устойчивы к высокому давлению, их не так сложно построить. Их минус — в слабой устойчивости к ржавчине, требуется нанесение на внутренние стенки защитного покрытия, к примеру, смолы. Снаружи поверхности стального биореактора необходимо тщательно зачистить и окрасить в два слоя.

Ёмкости биореакторов из бетона, кирпича или камня необходимо самым тщательным образом покрыть изнутри слоем смолы, способным обеспечить их эффективную водо- и газонепроницаемость, выдерживать температуру порядка 60 °С, агрессию сероводорода и органических кислот. Помимо смолы для защиты внутренних поверхностей реактора можно использовать парафин, разбавленный 4% моторного масла (нового) или керосина и разогретый до 120-150 °С — поверхности биореактора перед нанесением на них парафинового слоя необходимо прогреть горелкой.

При создании биореактора можно воспользоваться не подверженными ржавчине ёмкостями из пластика, но только из жёсткого с достаточно прочными стенками. Мягкий пластик можно использовать только в тёплый сезон, т. к. с наступлением холодов на нём будет сложно закрепить утеплитель, к тому же стенки его недостаточно прочны. Пластиковые биореакторы можно применять только для психрофильной ферментации органики.

Место размещения биореактора

Его размещение планируют в зависимости от свободного места на участке, удалённости от жилых построек, места размещения отходов и животных и т. д. Планирование наземного, полностью или частично погруженного в землю биореактора зависит от уровня грунтовых вод , удобства ввода и вывода органического субстрата в ёмкость реактора. Оптимальным будет размещение корпуса реактора ниже уровня земли — достигается экономия на оборудовании для введения органического субстрата, существенно повышается теплоизоляция, для обеспечения которой можно применить недорогие материалы (солому, глину).

Оснащение биореактора

Ёмкость реактора требуется оборудовать люком, с помощью которого можно выполнять ремонтные и профилактические работы. Между корпусом биореактора и крышкой люка необходимо проложить резиновую прокладку или слой герметика. Необязательным, но крайне удобным будет оснащение биореактора датчиком температуры, внутреннего давления и уровня органического субстрата.

Теплоизоляция биореактора

Её отсутствие не позволит эксплуатировать биогазовую установку круглый год, лишь в тёплое время. Для утепления заглубленного или полузаглубленного биореактора используется глина, солома, сухой навоз и шлак. Укладка утеплителя выполняется слоями — при установке заглубленного реактора котлован перекрывается слоем ПВХ-плёнки, препятствующей прямому контакту теплоизоляционного материала с почвой. До установки биореактора на дно котлована насыпается солома, поверх неё слой глины, затем выставляется биореактор. После этого все свободные участки между ёмкостью реактора и проложенным ПВХ-плёнкой котлованом засыпаются соломой практически до торца ёмкости, сверху засыпается 300 мм слой глины вперемешку со шлаком.

Загрузка и выгрузка органического субстрата

Диаметр труб загрузки в биореактор и выгрузки из него должен быть не меньше 300 мм, иначе они забьются. Каждую из них в целях сохранениях анаэробных условий внутри реактора следует оснастить винтовыми или полуоборотными задвижками. Объём бункера для подачи органики, в зависимости от типа биогазовой установки, должен быть равным суточному объёму вводимого сырья. Бункер подачи следует расположить на солнечной стороне биореактора, т. к. это будет способствовать повышению температуры во вводимом органическом субстрате, ускоряя процессы ферментации. Если же биогазовая установка связана непосредственно с фермой, то бункер следует разместить под её строением так, чтобы органический субстрат поступал в него под действием сил гравитации.

Трубопроводы загрузки и выгрузки органического субстрата следует расположить по противоположным сторонам биореактора — в этом случае вводимое сырьё будет распределено равномерно, а ферментированная органика будет легко извлекаться под воздействием гравитационных сил и массы свежего субстрата. Отверстия и монтаж трубопровода под загрузку и выгрузку органики следует выполнить до монтажа биореактора на место установки и до размещения на нём слоёв теплоизоляции. Герметичность внутреннего объёма биореактора достигается тем, что вводы труб расположены под острым углом, при этом уровень жидкости внутри реактора выше точек ввода труб — гидравлический затвор блокирует доступ воздуха.

Ввод нового и вывод прошедшего ферментацию органического материала проще всего проводить по принципу перелива, т. е. подъём уровня органики внутри реактора при вводе новой порции выведет через трубу выгрузки субстрат в объёме, равном объёму вводимого материала.

Если необходима быстрая загрузка органики, а эффективность ввода материала самотёком низка из-за недостатков рельефа, потребуется установка насосов. Способов два: сухой, при котором насос устанавливается внутрь загрузочной трубы и органика, поступая к насосу по вертикальной трубе, прокачивается им; влажный, при котором насос установлен в бункер загрузки, его привод осуществляется мотором, также установленным в бункер (в непроницаемом корпусе) либо через вал, мотор при этом установлен вне бункера.

Как собирать биогаз

Эта система включает в себя газовый трубопровод, распределяющий газ по потребителям, запорную арматуру, ёмкости для сбора конденсата, предохранительный клапан, ресивер, компрессор, газовый фильтр, газгольдер и приборы потребления газа. Монтаж системы выполняется лишь после полной установки биореактора в месте размещения.

Вывод для сбора биогаза выполняется в наиболее высшей точке реактора, к нему последовательно подключаются: герметичная ёмкость для сбора конденсата; предохранительный клапан и водяной затвор — ёмкость с водой, ввод газопровода в которую выполнен ниже уровня воды, вывод — выше (трубу газопровода перед водяным затвором следует изогнуть, чтобы вода не проникала в реактор), который не позволит двигаться газу в обратном направлении.

Образованный в ходе ферментации органического субстрата биогаз содержит в себе значительное количество паров воды, образующих конденсат по стенкам газопровода и в некоторых случаях блокирующих поступление газа к потребителям. Поскольку сложно выстроить газопровод таким образом, чтобы по всей его длине существовал уклон по направлению к реактору, куда бы стекал конденсат, то в каждом его низком участке требуется установить водяные затворы в виде ёмкостей с водой. Во время работы биогазовой установки периодически требуется удалять из них часть воды, иначе её уровень полностью перекроет поступление газа.

Газопровод должен быть построен трубами одного диаметра и одного типа, все клапаны и элементы системы также должны иметь один и тот же диаметр. Стальные трубы диаметром от 12 до 18 мм применимы для биогазовых установок малой и средней мощности, расход биогаза, поступающего по трубам этих диаметров, не должен быть выше 1 м 3 /ч (при расходе 0,5 м 3 /ч не допускается использование труб диаметром 12 мм на длину свыше 60 м). Это же условие действует при использовании в газопроводе пластиковых труб, кроме того, эти трубы необходимо закладывать ниже уровня земли на 250 мм, т. к. их пластик чувствителен к солнечному свету и теряет под воздействием солнечной радиации прочность.

При прокладке газопровода требуется самым тщательным образом убедиться в отсутствии протечек и газонепроницаемости мест соединений — проверка выполняется мыльным раствором.

Газовый фильтр

В биогазе содержится небольшое количество сероводорода, соединение которого с водой создаёт кислоту, активно коррозирующую металл — по этой причине нефильтрованный биогаз нельзя использовать для двигателей внутреннего сгорания. Между тем удалить сероводород из газа можно простым фильтром — 300 мм отрезком газовой трубы, наполненным сухой смесью металлической и деревянной стружки. Через каждый 2 000 м 3 биогаза, пройдённого через такой фильтр, необходимо извлечь его содержимое и выдержать около часа на отрытом воздухе — стружка будет полностью очищена от серы и её можно использовать повторно.

Запорная арматура и клапаны

В непосредственной близости от биореактора устанавливается основной газовый клапан, в магистраль газопровода следует врезать клапан, сбрасывающий биогаз при давлении более 0,5 кг/см 2 . Лучшими кранами для газовой системы будут шаровые клапаны с хромированным покрытием, использовать краны, предназначенные для водопроводных систем, в газовой нельзя. На каждом из потребителей газа установка шарового крана обязательна.

Механическое перемешивание

Для биореакторов небольшого объёма мешалки с ручным приводом подойдут лучше всего — они просты по своей конструкции и не требуют каких-то особых условий в процессе эксплуатации. Мешалка с механическим приводом устроена так — горизонтальный или вертикальный вал, размещённый внутри реактора по его центральной оси, на нём закреплены лопасти, при вращении перемещающие массы органики, богатую бактериями, от участка выгрузки ферментированного субстрата к месту загрузки свежей порции. Будьте внимательны — мешалка должна вращаться только в направлении промешивания от участка выгрузки к участку загрузки, перемещение метанообразующих бактерий от созревшего субстрата к вновь поступившему ускорит созревание органики и выработку биогаза с высоким содержанием метана.

Как часто следует промешивать органический субстрат в биореакторе? Необходимо определить периодичность путём наблюдения, ориентируясь на выход биогаза — излишне частое промешивание нарушит ферментацию, т. к. помешает деятельности бактерий, кроме того, вызовет вывод непереработанной органики. В среднем промежуток времени между перемешиваниями должен составлять от 4-х до 6-ти часов.

Обогрев органического субстрата в биореакторе

Без обогрева реактор может вырабатывать биогаз только в психрофильном режиме, в результате количество вырабатываемого газа будет меньше, а качество удобрений хуже, чем при более высокотемпературных мезофильном и термофильном рабочих режимах. Нагрев субстрата может производиться двумя способами: подогрев паром; соединение органики с горячей водой или подогрев с помощью теплообменника, в котором циркулирует горячая вода (без смешивания с органическим материалом).

Серьёзный недостаток подогрева паром (прямого подогрева) заключается в потребности включения в биогазовую установку системы парогенерации, включающую в себя систему очистки воды от присутствующей в ней соли. Парогенерационная установка выгодна только для действительно больших установок, перерабатывающих большие объёмы субстрата, к примеру, сточные воды. Кроме того, нагрев паром не позволит точно контролировать температуру нагрева органики, в результате возможен её перегрев.

Теплообменики, размещённые внутри или снаружи биореакторной установки, производят непрямой подогрев органики внутри реактора. Сразу стоит отбросить вариант с обогревом через пол (фундамент), т. к. скопление твёрдого осадка на дне биореактора ему препятствует. Наилучшим вариантом будет ввод теплообменника внутрь реактора, однако образующий его материал должен быть достаточно прочным и успешно выдерживать напор органики при её промешивании. Теплообменник большей площади лучше и однороднее обогреет органику, улучшая тем самым ферментационный процесс. Внешний обогрев, при его меньшей эффективности из-за теплопотери стенок, привлекателен тем, что ничто внутри биореактора не помешает движению субстрата.

Оптимальная температура в теплообменнике должна быть порядка 60 °С, сами теплообменники выполняются в виде радиаторных секций, змеевиков, параллельно сваренных труб. Поддержание температуры теплоносителя на уровне 60 °С снизит угрозу налипания на стенки теплообменника частиц взвесей, скопление которых существенно снизит теплопередачу. Оптимальное место размещения теплообменника — вблизи промешивающих лопастей, в этом случае угроза осаждения частиц органики на его поверхности минимальна.

Отопительный трубопровод биореактора выполняется и оснащается аналогично обычной системе отопления, т. е. должны соблюдаться условия возврата охлаждённой воды в наиболее низкую точку системы, требуются вентили спуска воздуха в её верхних точках. Контроль температуры органической массы внутри биореактора выполняется термометром, которым реактор следует оснастить.

Газгольдеры для сбора биогаза

При постоянном потреблении газа потребность в них отпадает, разве что они могут использоваться для выравнивания давления газа, что существенно улучшит процесс горения. Для биореакторных установок небольшой производительности на роль газгольдеров подойдут автомобильные камеры большого объёма, которые можно соединить между собой параллельно.

Более серьёзные газгольдеры, стальные или пластиковые, подбираются под конкретную биореакторную установку — в лучшем варианте газгольдер должен вмещать в себя объём биогаза суточной выработки. Требуемая ёмкость газгольдера зависит от его типа и давления, на которое он рассчитан, как правило, его объём 1/5...1/3 от внутреннего объёма биореактора.

Стальной газгольдер. Существуют три типа газгольдеров из стали: низкого давления, от 0,01 до 0,05 кг/см 2 ; среднего, от 8 до 10 кг/см 2 ; высокого, до 200 кг/см 2 . Стальные газгольдеры низкого давления использовать нецелесообразно, лучше заменить их пластиковыми газгольдерами — они дороги и применимы только при значительной дистанции между биогазовой установкой и приборами-потребителями. Газгольдеры низкого давления применяются в основном для выравнивания разницы между суточным выходом биогаза и его фактическим потреблением.

В стальные газгольдеры среднего и высокого давления биогаз закачивается компрессором, они используются только на биореакторах средней и крупной мощности.

Газгольдеры необходимо оснастить следующими контрольно-измерительными приборами: предохранительным клапаном, водяным затвором, редуктором давлений и манометром. Газгольдеры из стали обязательно подлежат заземлению!

Видео по теме

Доброго времени суток всем! Этот пост продолжает тему альтернативной энергетики для вашего. В нем я вам расскажу о биогазе и его использовании для обогрева жилища и приготовления пищи. Наиболее эта тема интересна фермерам, у которых есть доступ к разнообразному сырью для получения этого вида топлива. Давайте для начала разберемся в том, что такое биогаз и откуда он берется.

Откуда берется биогаз и из чего он состоит?

Биогаз — горючий газ, возникающий как продукт жизнедеятельности микроорганизмов в питательной среде. Этой питательной средой может быть навоз или силос, который закладывается в специальный бункер. В этом бункере, который называется реактором, и происходит образование биогаза. Внутри реактор будет устроен следующим образом:

Для ускорения процесса брожения биомассы необходим ее подогрев. Для этого может быть использован ТЭН или теплообменник, подключенный к любому отопительному котлу. Нельзя забывать и о хорошей теплоизоляции, чтобы избежать лишних затрат энергии на подогрев. Кроме подогрева, бродящую массу необходимо перемешивать. Без этого КПД установки может значительно снижаться. Перемешивание может быть ручным или механическим. Тут все зависит от бюджета или имеющихся в наличии технических средств. Самое главное в реакторе — это объем! Маленький реактор просто физически не способен выдать большое количество газа.

Химический состав газа сильно зависит от того какие процессы протекают в реакторе. Чаще всего там происходит процесс метанового брожения, в результате которого образуется газ с большим процентным содержанием метана. Но вместо метанового брожения вполне может происходить процесс с образованием водорода. Но по моему мнению, для обычного потребителя водород не нужен, а может даже и опасен. Вспомните хотя бы гибель дирижабля Гинденбург. Теперь давайте разберемся из чего можно получать биогаз.

Из чего можно получать биогаз?

Газ можно получать из различных видов биомассы. Давайте перечислю их в виде списка:

  • Отходы пищевых производств — это могут быть отходы от забоя скота или молочного производства. Подойдут отходы от производства подсолнечного или хлопкового масла. Это далеко не полный список, но для передачи сути достаточно. Данный вид сырья дает наибольшее содержание метана в газе (доходит до 85%).
  • Сельскохозяйственные культуры — для получения газа в некоторых случаях выращивают специальные виды растений. Например, для этого подойдет силосная кукуруза или морские водоросли. Процент содержания метана в газе держится в районе 70%.
  • Навоз — чаще всего применяется на больших животноводческих комплексах. Процентное содержание метана в газе, при использовании навоза в качестве сырья, обычно не превышает 60%, а все остальное это будет двуокись углерода и совсем немножко сероводород и аммиак.

Структурная схема установки для биогаза.

Для того, чтобы наилучшим образом понимать как работает установка для получения биогаза давайте рассмотрим следующий рисунок:


Устройство биореактора было рассмотрено выше, поэтому о нем говорить не будем. Рассмотрим другие составные части установки:

  • Приемник отходов — это некая емкость, в которую попадает сырье на первом этапе. В ней сырье может смешиваться с водой и измельчаться.
  • Насос (после приемника отходов) — фекальный насос, при помощи которого биомасса перекачивается внутрь реактора.
  • Котел — отопительный котел на любом топливе, предназначенный для обогрева биомассы внутри реактора.
  • Насос (рядом с котлом) — циркуляционный насос.
  • «Удобрения» — емкость, в которую попадает перебродивший ил. Он, как понятно, из контекста может использоваться как удобрение.
  • Фильтр — устройство, в котором происходит доведение биогаза до кондиции. В фильтре убираются лишние примеси газов и влаги.
  • Компрессор — осуществляет сжатие газа.
  • Газовое хранилище — герметичная цистерна, в которой готовый к применению газ может хранится сколь угодно долго.

Биогаз для частного дома.

Многие владельцы небольших ферм задумываются об использовании биогаза для внутренних нужд. Но разузнав по-подробнее о том, как все это работает большинство оставляет эту затею. Связано это с тем, что оборудование для переработки навоза или силоса стоит огромных денег, а выход газа (в зависимости от сырья)может получиться небольшим. Это в свою очередь делает установку оборудования невыгодным. Обычно, для частных домов фермеров устанавливают примитивные установки, работающие на навозе. Они, чаще всего, способны обеспечить газом только кухню и маломощный настенный газовый котел. При этом на сам технологический процесс придется затратить немало энергии — на подогрев, перекачку, работу компрессора. Дорогостоящие фильтра тоже нельзя исключать из поля зрения.


В общем, мораль тут такая — чем больше сама установка, тем выгоднее ее работа. А для домашних условий это практически всегда невыполнимо. Но это не значит, что домашних установок никто не делает. Предлагаю вам посмотреть следующее видео, чтобы увидеть как это выглядит из подручных материалов:

Резюме.

Биогаз — отличный способ полезной переработки органических отходов. На выходе получается топливо и полезное удобрение в виде перебродившего ила. Данная технология работает тем эффективней, чем больший объем сырья перерабатывается. Современные технологии позволяют серьезно увеличить выработку газа при помощи применения специальных катализаторов и микроорганизмов. Главным минусом всего этого является высокая цена одного кубометра. Для обычных людей чаще всего будет гораздо дешевле покупать газ в баллонах, чем делать установку по переработке отходов. Но, конечно, из всех правил есть исключения, поэтому перед тем, как принять решение о переходе на биогаз стоит посчитать цену кубометра и сроки окупаемости. На этом пока все, пишите вопросы в комментариях