Методы борьбы с ураганами. Разрушительные ураганы в России: причины возникновения, последствия. Предпринять структурные меры

Сезон ураганов 2017 года стал особенно разрушительным для США и стран Карибского бассейна, принеся сразу два мощных урагана — Харви и Ирму, — которые привели к многочисленным жертвам и значительному ущербу. Готовясь к приходу стихии, многие жители находящихся под угрозой территорий точно думали о том, есть ли способ остановить стихию. Об этом думали также ученые и метеорологи во всем мире.

Изобретение украинского ученого

Профессор кафедры методики преподавания физики и химии Ровенского государственного гуманитарного университета Виктор Бернацкий еще в 2013 году изобрел простое и дешевое устройство , которое, по его расчетам, может остановить ураган любой силы, пишет LB.ua .

Изобретение было представлено студентом профессора на международной конференции по борьбе с ураганами в Нидерландах, после доклада устройством заинтересовались представители США и Сингапура.

Ученый рассказал, что принцип работы его устройства очень прост. Система вентиляторов создает потоки воздуха, которые направляются против потоков урагана. В движение вентиляторы приводит сам ураган.

«То есть сам ураган запускает устройство и этим же себя гасит. Ему не нужны никакие дополнительные источники энергии . Оно срабатывает в момент возникновения урагана», – рассказал Бернацкий.

По его подсчетам, чтобы укротить ураган, необходимо разместить около 100 таких устройств размерами 1х3 или 2х6 метров вдоль береговой линии.

«Стоимость одного из них – максимум тысяча долларов, сделать прибор можно за день, а если наладить производство в промышленных масштабах, то все необходимое количество будет изготовлено в течение месяца», – пояснил он, добавив, что его устройство сможет предотвратить разрушения на миллиарды долларов, а также спасти человеческие жизни.

Ровенский изобретатель был награжден золотой медалью Европейской научно-промышленной палаты за это устройство.

Распыление реагентов и вызов осадков

Пока эффективность этого устройства не была проверена и доказана, но на данный момент у метеорологов есть другие способы “гасить” ураганы, однако не очень сильные, пишет “Комсомольская правда ”.

В США начали пытаться управлять ураганами еще в середине 1960-х годов. Один из успешных экспериментов был проведен в 1969 году у берегов Гаити. Туристы и местные жители увидели огромное белое облако, из которого расходились большие кольца. Метеорологи осыпали тайфун йодистым серебром и сумели отвернуть его от Гаити к побережью недружественных Панамы и Никарагуа.

По словам специалиста по моделированию погоды Санкт-Петербургского государственного университета Сергея Васильева, США пытались остановить ураган Катрина, но у них не получилось. По спутниковым снимкам видно, что ураган несколько раз менял направление движения и то ослабевал, то наливался прежней мощью. Это, по мнению специалиста, несколько необычно — как будто им двигала чья-то рука или нечто искусственное.

Суть методов борьбы с ураганами та же, что и с градовыми и грозовыми облаками. C помощью особых реагентов, которые могут вызвать или, наоборот, предотвратить немедленные осадки. Теоретически известно, что, засеивая с самолета этими веществами «глаз» тайфуна, его тыловую или переднюю часть, можно, создавая разность давлений и температуры, заставить его ходить «по кругу» или стоять на месте. Проблема в том, что ежесекундно нужно учитывать множество постоянно меняющихся факторов. Необходимо огромное количество реагентов.

“Американцы, похоже, пытаются делать это на практике. И, естественно, скрывают свои результаты — это вопрос национальной безопасности. А то, что Катрина все-таки повернула в сторону Нового Орлеана, хотя изначально казалось, что стихия пройдет мимо,значит, что ученые не смогли предусмотреть всех последствий эксперимента. На такие мысли меня наталкивает странная траектория движения урагана. Но правду, боюсь, мы узнаем еще очень не скоро”, — отметил Васильев.

Ядерная бомба

Люди считают, что эффективным методом против непогоды является ядерная бомба, и в преддверии урагана американцы часто пишут письма в Национальное управление океанических и атмосферных исследований с просьбой таким образом остановить стихию, сообщает Meteoprog .

Однако Национальное управление океанических и атмосферных исследований утверждает, что “это не поможет даже изменить траекторию урагана, а выброшенные радиоактивные осадки смогут довольно быстро перемещаться при помощи закрученных ветров и устроят экологическую катастрофу глобального масштаба.

Люди не задумываются о том, что радиоактивный ураган на порядок хуже и разрушительнее обычного. И вместо обычных разрушений, на большей части Техаса и Флориды насупила бы ядерная катастрофа, не уступающая Чернобылю.

Также не стоит забывать про энергию урагана, которая увеличила бы силу ядерной бомбы в несколько раз. Один ураган сам по себе выпускает 1,5 триллиона джоулей энергии благодаря скорости ветра, и даже 10-мегатонная ядерная бомба не может с этим сравниться.

Существует теория, что снизить разрушительную силу урагана можно увеличив давление воздуха в его сердце. Но, по подсчетам NASA, взрыва ядерной боеголовки для этого будет недостаточно.

Читайте также на ForumDaily:

Уважаемые читатели ForumDaily!

Спасибо, что остаетесь с нами и доверяете! За последние четыре года мы получили массу благодарных отзывов от читателей, которым наши материалы помогли устроить жизнь после переезда в США, получить работу или образование, найти жилье или устроить ребенка в садик.

Чтобы охватить все составляющие жизни в США, сейчас мы поддерживаем работу трех проектов:

Рассчитан на русскоязычных жителей самого крупного американского мегаполиса и знакомит их с важными новостями и интересными местами в городе, помогает в поиске работы или аренде жилья;

Поможет быть красивой и успешной каждой женщине в иммиграции, расскажет, как наладить отношения в семье, подскажет, как обустроить быт в США;

Содержит полезную информацию для всех тех, кто уже переехал в США или только планирует релокацию, советы о том, как экономно, но интересно провести отпуск в Америке, как заполнить декларацию, найти работу и организовать жизнь в США.

Мы будем признательны вам за любую сумму, которую вы готовы пожертвовать на работу проекта.

Читайте и подписывайтесь! Мы рады, что помогаем вам в период иммиграции, который может быть довольно сложным.

Всегда ваш, ForumDaily!

Processing . . .

Противоселевые мероприятия

Способы борьбы с селевыми потоками весьма разнообразны. Это возведение различных плотин для задержки твердого стока и пропуска смеси воды и мелких фракции пород, каскада запруд для разрушения селевого потока и освобождения его от твердого материала, подпорных стенок для укрепления откосов, нагорных стокоперехватывающих и водосборных канав для отвода стока в ближайшие водотоки и др.

Существуют также пассивные методы защиты, заключающиеся в том что люди предпочитают не селиться в потенциально селеопасных районах и не проводить в этих территориях дорог, линий электропередач, не возводить полей.

Выделяют 4 группы активных мероприятий :

1. Селепропускные (отводы)

2. Селенаправляющие (подпорные стенки, опояски, дамбы)

3. Селесбрасывающие (запруды, перепады, пороги)

4. Селеотбойные (полузапруды, бумы, шпоры)

Противоселевые сооружения

Основные виды:

· плотины (земляные, бетонные, железобетонные), предназначенные для аккумуляции всего твердого стока. Имеют водосборные и водопропускные узлы;

· плотины фильтрующие с решетчатыми ячейками в теле. Позволяют пропускать жидкий сток и задерживать твердый;

· плотины сквозные. Выполнены из соединенных между собой железобетонных балок с целью аккумуляции крупных камней;

· каскады запруд или низконапорных плотин;

· лотки и селедуки. Предназначаются для транзитного пропуска селевой массы под и над дорогами;

· струенаправляющие дамбы и берегозащитные стенки. Служат для отвода селевых потоков и защиты пойменных земель;

· водосборные траншеи и сифонные водосливы. Создаются для спуска моренных озёр во избежание их прорыва;

· поднапорные стенки для укрепления откосов;

· напорные стокоперехватывающие и водосбросные канавы. Служат для перехвата жидкого стока со склонов и отвода его в ближайшие водотоки.

Почти на каждом конусе выноса горных речек селевого характера и по их берегам расположены культурные земли, населенные места, транспортные пути (железнодорожные и автомобильные), ирригационные и деривационные каналы и другие народнохозяйственные объекты.

Защита народнохозяйственных объектов от селевых потоков в зависимости от характера объекта выполняется различными путями. Наиболее распространенный метод непосредственной защиты от селей является строительство различных гидротехнических сооружений.

Когда подзащитные объекты представляют собой неширокую полосу, как например, железнодорожную или автомобильную дорогу или ирригационные и деривационные каналы, то селевые потоки можно пропускать над или под ними по гидротехническим сооружениям - селеспускам. .

По плановому расположению защитные сооружения можно подразделить на два типа:

1) продольные сооружения в виде опоясок, подпорных стенок или дамб, ограждающих народнохозяйственные объекты, или защищающих размываемые участки берега, или вала на более, или менее значительном протяжении;

2) поперечные сооружения в виде системы полузапруд (шпор), отходящих от защищаемого объекта, дамб или берега в пойму реки под тем или иным углом, в основном вниз по течению.

Вторая система защиты является более распространенной, но иногда обе системы комбинируются.

Расстояние между полузапрудами изменяется от 30 до 200 м; угол полузапруды с направлением дамб или берега колеблется от 10° до 85°, обычно 25-30°; длина изменяется от 20 до 120 м.

В отношении капитальности конструкций, сооружения можно разбить на два основных класса:

I. Долговременные сооружения из кладки на цементном или известковом растворе, а также широко применяются и сборные железобетонные;

II. Недолговременные каменно-хворостяные, каменно-бревенчатые и габионные сооружения.

В практике эксплуатации наибольшее распространение получили сооружения второго класса.

Сооружения первого класса, то есть долговременные, применяются в бассейне Верхней Кубани на ее горных притоках. Повсюду они встречаются в сочетании с сооружениями второго класса. В поперечном сечении они имеют или прямоугольную, или трапециевидную форму: с наклонными либо обеими боковыми гранями, либо одной передней или задней гранью; ширина профиля меняется от 0,4 до 4,0 м, высота - от 1,0 до 3,5 м.

В некоторых случаях эти сооружения снабжены донными шпорами, защищающими их основание от подмыва; длина шпор меняется от 1,5 до 6 м, а ширина от 0,5 до 1 м.

Естественный срок службы недолговременных сооружений - 1-2 года, долговременных - 3-4 года. Фактический срок службы, однако, определяется степенью устойчивости противоселевых сооружений из местных материалов. Селевые потоки даже средней мощности обычно вызывают их полное разрушение. К сооружениям второго класса относятся: каменно-хворостяные, каменно-бревенчатые с сипаями или без них и габионные устройства.

К сооружениям второго класса относятся: каменно-хворостяные, каменно-бревенчатые с сипаями или без них и габионные устройства.

Каменно-хворостяные противоселевые сооружения по конструкции можно разделить на два вида: первый из них характеризуется тем, что имеет трапециевидное сечение из перемежающихся слоев толщиной 0,3-0,5 м хвороста и крупного камня, шириной по верху 1,5-7 м, уклоном боковых граней 1:0,5, 1:1, 1:1,5 и высотой 1-5 м.

Второй вид имеет прямоугольное сечение и состоит из двух рядов (иногда с третьим и четвертым срединными) плетневых ограждений, шириной в пределах 1,5-7 м, заглубленных в ложе реки на некоторую величину и загруженных попеременно слоями хвороста и камня (иногда эти ряды скрепляются между собой проволокой). Применяемые в этих же сооружениях сипаи, с целью придания общей устойчивости, представляют собой треноги из бревен диаметром 20 см установленных через 3-20 м, но эти дополнительные устройства, не имея связи между собой, не оправдывают своего назначения.

Каменно-бревенчатые сооружения по внешнему виду являются упрощенными ряжевыми дамбами с вертикальными несплошными стенками, укрепленными поперечными схватками и подкосами; на практике ширина таких сооружений варьирует от 1,5 до 7 м при высоте от 1,5 до 5 м.

Верхние концы опорных стоек дамбы в большинстве случаев возвышаются над верхней отметкой на некоторую величину с целью иметь возможность производить наращивание в случае заноса дамб наносами. Однако такое наращивание делает устойчивые вначале сооружения после достижения известной высоты малоустойчивыми в случае размыва отложений вдоль сооружений.

Эффективность защитных сооружений определяется видом этих сооружений, правильностью их конструкции и плановым расположением системы сооружений.

В отношении вида сооружений необходимо признать, что в тяжелых условиях работы по защите от селевых потоков наиболее эффективными являются рационально сконструированные и правильно расположенные в плане сооружения из каменной кладки на растворе или, в некоторых случаях, из сухой каменной кладки.

Каменно-хворостяные и каменно-бревенчатые сооружения являются менее эффективными, вследствие их недолговечности и большей подверженности разрушающему действию селей.

При назначении планового расположения защитных сооружений непосредственно на месте замечается стремление к возможно полной защите лишь данного объекта, без учета возможного действия этого расположения на режим реки и на другие объекты, расположенные на той же реке, так что зачастую защита одних объектов влечет за собой появление угрозы для безопасности других.

Назначение схемы расположения сооружения без учета необходимости изменения режима реки в благоприятном для работы сооружений направлении наблюдалось на многих горных водотоках бассейна Верхней Кубани. Поскольку осуществленные сооружения не изменяли аккумулятивную деятельность реки, обычно повышение ее ложа продолжалось, что обусловливало необходимость периодического повышения сооружений. В некоторых случаях наблюдалось противоположное явление размыва.

Необходимо отметить также, что при назначении планового расположения сооружений не всегда в достаточной; степени учитывалась необходимость взаимной связи между отдельными сооружениями, необходимость надежного примыкания их к устойчивым неразмываемым или неподвергающимся прямому действию потока участкам коренного берега.

В период бедствия

Сохраняйте спокойствие и избегайте паники. Окажите помощь соседям, инвалидам, детям, престарелым и людям, оказавшимся без крова.

Действуйте в соответствии с правилами поведения при сходе лавин.

Выполняйте указания органов власти и отрядов реагирования, особенно в части, касающейся эвакуации людей и скота. Не забудьте отключить газ, электроэнергию, воду и закрыть дверь на ключ.

Не используйте для эвакуации личный транспорт до специального указания властей.

Слушайте радиосообщения и не занимайте без надобности телефон во избежание перегрузок сети.

После бедствия

Сохраняйте спокойствие и избегайте паники.

Проверьте, нет ли пострадавших поблизости, окажите им помощь.

Слушайте радиосообщения, не пользуйтесь без надобности телефоном.

Сотрудничайте с официальными службами, проводящими спасательные работы и оказывающими помощь. Окажите помощь в срочных ремонтных работах. Помогите в уходе за животными.

Помогите опознать погибших. - После восстановления подачи электроэнергии, проверьте исправность водопровода и отопления.

Почему возникает цунами?

Причина возникновения цунами - подводные землетрясения. Мощные толчки создают направленное движение огромных масс воды, которые накатывают на берег волнами высотой свыше 10 метров, приводят к жертвам и разрушениям. Неудивительно, что наибольший риск возникновения стихии существует в прибрежных районах с повышенной сейсмической активностью. Так, всем известен пример цунами в Японии 2011 года , которое привело к невероятному количеству человеческих жертв и спровоцировалоаварию на АЭС "Фукусима-1"

Довольно часто возникает угроза цунами на Филлипинах, в Индонезии, в других островных государствах Тихого океана. В любом случае, последствия цунами могут быть очень серьезны и пренебрегать этой опасностью не стоит.

Как выжить при цунами?

В случае, если угроза цунам и вполне реальна, следует срочно покинуть прибрежный район, передвигаясь перпендикулярно береговой линии. Относительную безопасность обеспечивает возвышенность 30-40 метров над уровнем моря и/или удаление от берега в 2-3 километра. Такое убежище обеспечивает существенное снижение риска, даже если местности угрожаютбольшие цунами . Однако история знает примеры волн, которые преодолевали указанные расстояния и высоты. Так что, в общем случае, самым правильным стоит считать принцип «чем дальше и выше, тем лучше».

При отступлении из зоны повышенной опасности следует избегать двигаться вдоль русла реки или ручья. Эти территории подвергаются затоплению в первую очередь.

Цунами в озерах или водохранилищах менее опасны, но даже в этом случае следует проявлять осторожность. Безопасным возвышением считается 5 метров над уровнем воды. Для этой цели хорошо подойдут высокие здания.

Напротив, с осторожностью стоит относиться к спасению в зданиях, если населенному пункту угрожаетбольшое цунами из океана. Многие постройки просто не выдержат давление вала воды и рухнут. Впрочем, если ситуация не оставляет выбора, то высокие капитальные постройки – единственный шанс выжить. В них стоит подняться на самые высокие этажи, закрыть окна и двери. Как подсказывают правила поведения при землетрясениях, самые безопасные зоны в здании – это участки около колонн, несущих стен, в углах.

Спасение от цунами – это, как правило, необходимость избежать ударов второй и нескольких последующих волн. Первая волна после землетрясения обычно не слишком опасна, но усыпляет бдительность местных жителей.

В случае, если волна все же настигла человека, очень важно удержаться за дерево, столб, здание, и избегать столкновения с крупными обломками. Как только появится возможность, нужно избавиться от промокшей одежды и обуви, а после найти убежище на случай повторных волн.

Увидеть стихию в действии и, как следствие, более трезво оценить возможную опасность поможет цунами фото - специальная подборка снимков из разных частей земного шара.

После цунами

Одна из основных опасностей цунами – это повторные волны, каждая из которых может быть сильнее предыдущей. Опыт цунами 2011 и всех предыдущих лет показывает, что возвращаться обратно стоит только после официальной отмены тревоги либо спустя 2-3 часа после прекращения сильного волнения на море. В противном случае, существует серьезный риск попасть под удар стихии, ведь пауза между крупными водяными валами может достигать часа.

Вернувшись домой после цунами , следует внимательно обследовать здание на предмет устойчивости, утечек газа, повреждений электропроводки. Возможно, более удачной идеей будет дождаться профессиональных спасателей. Отдельную опасность представляет наводнение, которое, чаще всего, является прямым следствием цунами.

В случае, если это необходимо, стоит включиться в спасательную операцию и оказать помощь тем, кто в этом нуждается.

Классификация наводнений:
1. ливневые (дождевые);
2. половодья и паводки (связанные с таянием снега и ледников);
3. зажорные и заторные (связанные с ледовыми явлениями);
4. завальные и прорывные;
5. нагонные (ветровые на побережьях морей);
6. цунамигенные (на побережьях от подводных землетрясений, извержений и прибрежных крупных обвалов).

Речные наводнения делят на следующие типы:
1. низкие (небольшие или пойменные) - затапливается низкая пойма;
2. средние - затапливаются высокие поймы, иногда заселенные или техногенно обработанные (пашни, луга, огороды и др.);
3. сильные - затапливаются террасы с расположенными на них строениями, коммуникациями и др., часто требуется эвакуация населения, хотя бы частичная;
4. катастрофические - существенно затапливаются огромные пространства, включая города и поселки; требуются аварийно-спасательные работы и массовая эвакуация населения.

По масштабу проявления 6 категорий наводнений:
1. Всемирный потоп;
2. континентальные;
3. национальные;
4. региональные;
5. районные;
6. местные.

Антропогенные причины наводнений:
Прямые причины - связаны с проведением различных гидротехнических мероприятий и разрушением плотин.
Косвенные - сведение лесов, осушение болот (осушение болот - естественных аккумуляторов стока увеличивает сток до 130 - 160%), промышленная и жилищная застройка, это приводит к изменению гидрологического режима рек за счёт увеличения поверхностной составляющей стока. Уменьшается инфильтрующая способность почв и увеличивается интенсивность их смыва. Сокращается суммарное испарение из-за прекращения перехвата осадков лесной подстилкой и кронами деревьев. Если свести все леса, то максимальный сток может возрасти до 300%.
Происходит уменьшение инфильтрации из-за роста водонепроницаемых покрытий и застроек. Рост водоупорных покрытий на урбанизированной территории в 3 раза увеличивает паводки.

Способы защиты от наводнения:

Поднять уровень осведомленности населения о наводнениях и вести пропаганду мер предосторожности:

В виде специальных школьных программ;

Предупреждающих знаков, планов эвакуации, буклетов с изображениями зон риска;

Собрать данные о предыдущих наводнениях, обозначить пострадавшие зоны (глубину затопления) и отметить самые сильные наводнения.

Провести оценку рисков:

Определить потенциальные места удара стихии, частоту наводнений в зоне, объекты под угрозой затопления;

Распространить карты с этой информацией среди местных жителей, чтобы заранее можно было рассчитать степень риска для каждого человека, приготовить план аварийных действий и знать, где потребуются меры защиты от наводнения; использовать карты в образовательных и пропагандистских целях;

Установить значки уровня возможного затопления;

Подготовить публичный план действий во время наводнения.

Предпринять неструктурные меры:

Определить способы изменения зон затопления для уменьшения пагубных последствий стихии;

Организовать качественную систему раннего оповещения (прогноз погоды, высокая степень готовности команд спасения и убежищ).

Вести среди населения разъяснения по поводу причин, рисков и признаков надвигающегося наводнения.

Разработать план эвакуации, который учитывает особенности всех категорий населения.

Предпринять структурные меры:

Построить дамбы и резервуары, рвы и запруды, специальные каналы заграждения, которые помогут уменьшить объем воды;

Обеспечить питьевую воду защитой от загрязнения, так как при затоплении в нее могут попасть токсичные вещества и нечистоты.

Наземное планирование:

По возможности предотвратить строительство в зонах, где возможно затопление. Места возле рек отводить под парки или экологические резервы;

Если промышленные объекты расположены в зонах риска, удостовериться, что там соблюдены меры предосторожности и имеются планы эвакуации техники и материалов;

Защитить заболоченные земли и поймы рек; восстановить осушенные территории;

Сохранять природную растительность и лесной покров в таких зонах, что способствует удержанию воды в почве;

Обеспечить рекам возможность течь по природному руслу, не преграждать им путь.

Увеличить устойчивость зданий:

Дома, школы, другие общественные строения, системы отопления и электроснабжения разместить выше уровня затопления;

Использовать водостойкие строительные материалы (бетон, керамика);

Установить водонепроницаемые барьеры на окна и двери подвалов;

Чтобы избежать вытекания содержимого сточных труб во время наводнения внутрь дома, снабдить их специальными клапанами, препятствующими обратному потоку;

Приобрести страховку от наводнений.

Порядок действий во время наводнения:

Эвакуация на основе разработанного плана с учетом специфики групп населения, с подготовленными убежищами с водой, пищей, надлежащими санитарными условиями.

Снабдить эвакуированных информацией об уровне воды, вероятном ущербе и сроках возвращения из убежища.

Убедиться, что все коммуникации отключены во избежание травмирования людей;

Спланировать расходы на восстановление после наводнения;

Проверить, как скоро школы, органы управления и предприятия смогут возобновить работу, что значительно упростит постэвакуационные мероприятия;

Поиск временной работы для эвакуированных жителей;

Предоставить наиболее пострадавшим консультацию профессиональных специалистов.

Мероприятия после наводнения:

Провести и обнародовать оценку ущерба;

Разработать план восстановления жилых домов, возобновления подачи общественных и коммерческих услуг;

Оказать помощь населению по возвращению в свои дома после подтверждения их безопасности и снабдить советами по профилактическим мероприятиям;

Предупредить людей о возможных рисках во время восстановления жилья;

Убедиться в наличии свободного доступа пострадавших к информации об услугах помощи и поддержки;

Особым слоям населения (пожилым, больным, сиротам и т.д.) оказать индивидуальную помощь.

Извлечь урок из случившегося для успешного применения полученного опыта в будущем.

Инвестировать в мероприятия по уменьшению разрушения во время наводнений.

ВУЛКАН

Вулкан – это геологическое образование, возникающее над каналами и трещинами в земной коре, по которым на земную поверхность извергаются расплавленные горные породы (лава), пепел, горячие газы, пары воды и обломки горных пород.Различают действующие, уснувшие и потухшие вулканы, а по форме – центральные, извергающиеся из центрального выводного отверстия, и трещинные, аппараты которых имеют вид зияющих трещин и ряда небольших конусов. Основные части вулканического аппарата: магматический очаг (в земной коре или верхней мантии); жерло - выводной канал, по которому магма поднимается к поверхности; конус – возвышенность на поверхности Земли из продуктов выброса вулкана; кратер – углубление на поверхности конуса вулкана. Современные вулканы расположены вдоль крупных разломов и тектонически-подвижных областей. На территории России активно действующими вулканами являются: Ключевская Сопка и Авачинская Сопка (Камчатка). Опасность для человека представляют потоки магмы (лавы), падение выброшенных из кратера вулкана камней и пепла, грязевые потоки и внезапные бурные паводки. Извержение вулкана может сопровождаться землетрясением.

Гроза - атмосферное явление, при котором внутри облаков или между облаком и земной поверхностью возникают электрические разряды молнии, сопровождаемы громом. Как правило, гроза образуется в мощных кучево-дождевых облаках и связана с ливневым дождем, градом и шквальным усилением ветра.

Защита населения при ураганах, бурях, смерчах

Территория любого региона подвержена комплексному воздействию десятков опасных природных явлений, развитие и негативное проявление которых в виде катастроф и стихийных бедствий ежегодно наносит огромный материальный ущерб и приводит к человеческим жертвам. Наиболее характерными природными явлениями по повторяемости в зависимости от времени года и приводящими к возникновению ЧС являются ураганы, бури и смерчи. Ураганы, бури и смерчи относятся к ветровым метеорологическим явлениям, по своему разрушающему воздействию часто сравнимы с землетрясениями. Основным показателем, определяющим разрушающее действие ураганов, бурь и смерчей, является скоростной напор воздушных масс, обусловливающий силу динамического удара и обладающий метательным действием. По скорости распространения опасности ураганы, бури и смерчи, учитывая в большинстве случаев наличие прогноза этих явлений (штормовых предупреждений), могут быть отнесены к чрезвычайным событиям с умеренной скоростью распространения. Это позволяет осуществлять широкий комплекс предупредительных мероприятий как в период, предшествующий непосредственной угрозе возникновения, так и после их возникновения - до момента прямого воздействия. Эти мероприятия по времени подразделяются на две группы: заблаговременные (предупредительные) мероприятия и работы; оперативные защитные мероприятия, проводимые после объявления неблагоприятного прогноза, непосредственно перед данным ураганом (бурей, смерчем). Заблаговременные (предупредительные) мероприятия и работы осуществляются с целью предотвращения значительного ущерба задолго до начала воздействия урагана, бури и смерча и могут охватывать продолжительный отрезок времени. К заблаговременным мероприятиям относятся: ограничение в землепользовании в районах частого прохождения ураганов, бурь и смерчей; ограничение в размещении объектов с опасными производствами; демонтаж некоторых устаревших или непрочных зданий и сооружений; укрепление производственных, жилых и иных зданий, и сооружений; проведение инженерно-технических мероприятий по снижению риска опасных производств в условиях сильного ветра, в т.ч. повышение физической стойкости хранилищ и оборудования с легковоспламеняющимися и другими опасными веществами; создание материально-технических резервов; подготовка населения и персонала спасательных служб.

К защитным мероприятиям, проводимым после получения штормового предупреждения, относят:

Своевременный прогноз и оповещение населения;
- прогнозирование пути прохождения и времени подхода к различным районам урагана (бури, смерча), а также его последствий;

Оперативное увеличение размеров материально-технического резерва, необходимого для ликвидации последствий урагана (бури, смерча);

Частичную эвакуацию населения;

Подготовку убежищ, подвалов и других заглубленных помещений для защиты населения;

Перемещение в прочные или заглубленные помещения уникального и особо ценного имущества;

Подготовку к восстановительным работам и мерам по жизнеобеспечению населения.

Уменьшение воздействия вторичных факторов поражения (пожаров, прорывов плотин, аварий);

Повышение устойчивости линий связи и сетей электроснабжения;

Укрытие в прочных сооружениях и местах, обеспечивающих защиту сельскохозяйственных животных; заготовка для них воды и кормов.

Меры по снижению возможного ущерба от ураганов, бурь и смерчей принимаются с учетом соотношения степени риска и возможных масштабов ущерба к требуемым затратам. Особое внимание при проведении заблаговременных и оперативных мер по снижению ущерба обращается на предотвращение тех разрушений, которые могут привести к возникновению вторичных факторов поражения, превышающих по тяжести воздействие самого стихийного бедствия.

Важным направлением работы по снижению ущерба является борьба за устойчивость линий связи, сетей электроснабжения, городского и междугородного транспорта. Основным способом повышения устойчивости в этом случае является их дублирование временными и более надежными в условиях сильного ветра средствами.

Каждый год атмосферные вихри, скорость ветра в которых достигает порой 120 км/ч, проносятся над тропическими морями, опустошая побережье. В Атлантике и восточной части Тихого океана их называют ураганами, на западном побережье Тихого океана — тайфунами, в Индийском океане — циклонами. Когда они врываются в густо населенные районы, гибнут тысячи людей, а материальный ущерб достигает миллиардов долларов. Сможем ли мы когда-нибудь обуздать беспощадную стихию? Что нужно сделать, чтобы ураган изменил свою траекторию или потерял разрушительную силу?

Прежде чем приступить к управлению ураганами, необходимо научиться точно прогнозировать их маршрут и определять физические параметры, влияющие на поведение атмосферных вихрей. Затем можно будет заняться поисками способов воздействия на них. Пока мы еще в самом начале пути, но успехи компьютерного моделирования ураганов позволяют надеяться, что мы все-таки можем справиться со стихией. Результаты моделирования реакции ураганов на мельчайшие изменения их первоначального состояния оказались весьма обнадеживающими. Чтобы понять, почему мощные тропические циклоны чутко реагируют на любые возмущения, необходимо разобраться, что они из себя представляют и как зарождаются.

Ураганы возникают из грозовых скоплений над океанами в экваториальной зоне. Тропические моря поставляют в атмосферу тепло и водяной пар. Теплый влажный воздух поднимается вверх, где пары воды конденсируются и превращаются в облака и осадки. При этом тепло, запасенное водяным паром во время испарения с поверхности океана, освобождается, воздух продолжает нагреваться и поднимается все выше. В результате в тропиках формируется зона пониженного давления, образующая так называемый глаз бури — зону затишья, вокруг которой закручивается вихрь. Оказавшись над сушей, ураган утрачивает поддерживающий его источник теплой воды и быстро ослабевает.

Так как ураганы получают большую часть энергии из тепла, освобождающегося при конденсации водяных паров над океаном и образовании дождевых облаков, первые попытки укрощения непокорных гигантов сводились к искусственному созданию облаков. В начале 60-х гг. XX в. этот метод был опробован в ходе экспериментов, проведенных научно-консультативной комиссией Project Stormfury, учрежденной правительством США.

Ученые пробовали замедлить развитие ураганов, увеличивая количество осадков в первой полосе дождей, которая начинается сразу за стеной глаза бури — скоплением облаков и сильных ветров, окружающих центр урагана. Для создания искусственных облаков с самолета сбрасывали йодистое серебро. Метеорологи надеялись, что распыляемые частицы станут центрами кристаллизации переохлажденного водяного пара, поднявшегося в холодные слои атмосферы. Предполагалось, что облака будут формироваться быстрее, поглощая при этом тепло и влагу с поверхности океана и замещая стену глаза бури. Это привело бы к расширению центральной спокойной зоны и ослаблению урагана.

Сегодня создание искусственных облаков уже не считается эффективным методом, т.к. выяснилось, что содержание переохлажденного водяного пара в воздушных массах бурь незначительно.

Чувствительная атмосфера

Современные исследования ураганов опираются на предположение, сделанное мною 30 лет назад, когда еще студентом я изучал теорию хаоса. На первый взгляд, хаотические системы ведут себя произвольно. На самом деле их поведение подчиняется определенным правилам и сильно зависит от первоначальных условий. Поэтому с виду незначительные, случайные возмущения могут привести к серьезным непредсказуемым последствиям. Например, небольшие колебания температуры воды в океане, смещение крупных воздушных потоков и даже изменение формы дождевых облаков, кружащихся вокруг центра урагана, могут повлиять на его силу и направление движения.

Высокая восприимчивость атмосферы к незначительным воздействиям и ошибки, накапливающиеся при моделировании погоды, затрудняют долгосрочное прогнозирование. Возникает вопрос: если атмосфера столь чувствительна, то нельзя ли как-нибудь повлиять на циклон, чтобы он не достиг населенных районов или хотя бы ослаб?

Раньше я и мечтать не мог о воплощении своих идей, но за последнее десятилетие математическое моделирование и дистанционное зондирование шагнули далеко вперед, так что настала пора заняться крупномасштабным управлением погодой. При финансовой поддержке Института передовых идей NASA мы с коллегами из национальной научно-конструкторской консалтинговой фирмы «Исследования атмосферы и окружающей среды» (Atmospheric and Environmental Research, AER) приступили к компьютерному моделированию ураганов, чтобы разработать перспективные методы воздействия на них.

Моделирование хаоса

Даже самые точные современные компьютерные модели для предсказания погоды несовершенны, однако они могут оказаться весьма полезными при изучении циклонов. Для составления прогнозов применяются числовые методы моделирования развития циклона. Компьютер последовательно рассчитывает показатели атмосферных условий, соответствующих дискретным моментам времени. Предполагается, что общее количество энергии, импульса и влаги в рассматриваемом атмосферном образовании остается неизменным. Правда, на границе системы ситуация несколько сложнее, т.к. приходится учитывать влияние внешней среды.

При построении моделей состояние атмосферы определяют по полному перечню переменных, характеризующих давление, температуру, относительную влажность, скорость и направление ветра. Количественные показатели соответствуют моделируемым физическим свойствам, которые подчиняются закону сохранения. В большинстве метеорологических моделей рассматриваются значения перечисленных переменных в узлах трехмерной координатной сетки. Конкретный набор значений всех параметров во всех точках сетки называется состоянием модели, которое вычисляется для последовательных моментов времени, разделенных небольшими промежутками — от нескольких секунд до нескольких минут в зависимости от разрешающей способности модели. Учитывается движение ветра, процессы испарения, выпадения осадков, влияние поверхностного трения, инфракрасного охлаждения и нагревания солнечными лучами.

К сожалению, метеорологические прогнозы несовершенны. Во-первых, начальное состояние модели всегда неполно и неточно, т.к. определить его для ураганов крайне сложно, поскольку проведение непосредственных наблюдений затруднено. Космические снимки отображают сложную структуру урагана, но они недостаточно информативны. Во-вторых, атмосфера моделируется только по узлам координатной сетки, а располагающиеся между ними мелкие детали не включаются в рассмотрение. Без высокой разрешающей способности смоделированная структура самой важной части урагана — стены глаза бури и прилегающих к ней областей — получается неоправданно сглаженной. Кроме того, в математических моделях таких хаотических явлений, как атмосфера, быстро накапливаются вычислительные ошибки.

Для проведения наших исследований мы модифицировали эффективно использующуюся для прогнозов схему инициализации — четырехмерную систему ассимиляции данных (four-dimensional variational data assimilation, 4DVAR). Четвертое измерение, присутствующее в названии, — это время. Исследователи из Европейского центра среднесрочных прогнозов погоды, одного из крупнейших метеорологических центров мира, используют эту усложненную технологию для ежедневного предсказания погоды.

Сначала система 4DVAR ассимилирует данные, т.е. объединяет показания, полученные со спутников, кораблей и измерительных приборов на море и в воздухе, с данными предварительного прогноза состояния атмосферы, основанного на фактической информации. Предварительный прогноз дается на шесть часов с момента снятия показаний метеоприборов. Данные, поступающие с наблюдательных пунктов, не накапливаются в течение нескольких часов, а сразу обрабатываются. Объединенные данные наблюдений и предварительного прогноза используются для вычисления следующего шестичасового прогноза.

Теоретически такая комплексная информация точнее всего отражает истинное состояние погоды, поскольку результаты наблюдений и гипотетические данные корректируют друг друга. Хотя статистически этот метод вполне обоснован, исходное состояние модели и информация, необходимая для его успешного применения, все равно остаются приблизительными.

Система 4DVAR находит такое состояние атмосферы, которое, с одной стороны, удовлетворяет уравнениям модели, а с другой — оказывается близким как к прогнозируемой, так и к наблюдаемой обстановке. Для выполнения задачи проводится корректировка первоначального состояния модели в соответствии с изменениями, произошедшими за шесть часов наблюдений и моделирования. В частности, выявленные различия используются для вычисления реакции модели — как небольшие изменения каждого из параметров влияют на степень соответствия показателей моделирования и наблюдений. Расчет с помощью так называемой сопряженной модели ведется в обратном порядке через шестичасовые промежутки времени. Затем программа оптимизации выбирает наилучший вариант поправок к первоначальному состоянию модели, чтобы результаты дальнейших расчетов наиболее точно отражали реальное развитие процессов в урагане.

Поскольку корректирование выполняется методом аппроксимации уравнений, то вся процедура — моделирование, сравнение, вычисление с помощью сопряженной модели, оптимизация — должна повторяться до получения точно выверенных результатов, которые становятся основой для составления предварительного прогноза на следующий шестичасовой период.

Построив модель уже прошедшего урагана, мы можем изменять его характеристики в любой момент времени и наблюдать за последствиями внесенных возмущений. Оказалось, что на формирование бури влияют только самоусиливающиеся внешние воздействия. Представьте пару камертонов, один из которых вибрирует, а второй находится в спокойном состоянии. Если они настроены на разные частоты, то второй камертон не шелохнется, несмотря на воздействие звуковых волн, испускаемых первым. Но если оба камертона настроены в унисон, второй войдет в резонанс и начнет колебаться с большой амплитудой. Так же и мы пытаемся «настроиться» на ураган и отыскать подходящее стимулирующее воздействие, которое привело бы к желаемому результату.

Укрощение бури

Наша научная группа из AER провела компьютерное моделирование двух разрушительных ураганов, неистовствовавших в 1992 г. Когда один из них — Иники — прошел прямо над гавайским островом Кауаи, погибло несколько человек, был нанесен огромный материальный ущерб и целые лесные массивы сровнялись с землей. Месяцем ранее ураган Эндрю обрушился на Флориду южнее Майами и превратил в пустыню целый регион.

Если учесть несовершенство существующих методов прогнозирования, наш первый эксперимент моделирования имел неожиданный успех. Чтобы изменить путь Иники, мы прежде всего выбрали место в ста километрах западнее острова, в котором должен оказаться ураган через шесть часов. Затем составили данные возможных наблюдений и загрузили эту информацию в систему 4DVAR. Программа должна была рассчитать мельчайшие изменения основных параметров первоначального состояния урагана, которые модифицировали бы его маршрут нужным образом. В этом первичном эксперименте мы допускали выбор любых искусственно созданных возмущений.

Оказалось, что самые значительные преобразования коснулись первоначального состояния температуры и ветра. Типичные изменения температуры по всей сети координат составляли десятые доли градуса, но самые заметные изменения — увеличение на 2°С — оказались в нижнем слое к западу от центра циклона. Согласно расчетам, изменения скорости ветра составили 3,2-4,8 км/ч. В некоторых местах скорость ветра изменилась на 32 км/ч в результате незначительной переориентации направления ветра вблизи центра урагана.

Хотя обе компьютерные версии урагана Иники — первоначальная и с внесенными возмущениями — казались идентичными по структуре, небольших изменений ключевых переменных было достаточно, чтобы ураган развернулся за шесть часов на запад, а потом двинулся прямо на север, оставив остров Кауаи нетронутым. Относительно малые искусственные преобразования начальной стадии циклона были обсчитаны системой нелинейных уравнений, описывающих его деятельность, и через шесть часов ураган пришел в назначенное место. Мы на верном пути! В последующем моделировании использовалась координатная сетка с более высокой разрешающей способностью, а систему 4DVAR мы запрограммировали на сведение к минимуму материального ущерба.

В одном из экспериментов мы усовершенствовали программу и рассчитали приращение температуры, которое могло бы обуздать ветер у берегов Флориды и снизить ущерб, нанесенный ураганом Эндрю. Компьютеру предстояло определить наименьшие возмущения в начальном температурном режиме, которые могли бы снизить силу штормового ветра в последние два часа шестичасового периода. Система 4DVAR определила, что лучший способ ограничить скорость ветра — провести большие преобразования начальной температуры около центра циклона, а именно: изменить ее на 2-3°С в нескольких местах. Меньшие изменения температуры воздуха (меньше 0,5°С) произошли на расстоянии от 800 до 1000 км от центра бури. Возмущения привели к образованию волнообразно чередующихся колец нагрева и охлаждения вокруг урагана. Несмотря на то что в начале процесса была изменена только температура, значения всех основных характеристик быстро отклонились от реально наблюдавшихся. В неизмененной модели ураганные ветры (более 90 км/ч) накрывали южную Флориду к концу шестичасового периода, чего не наблюдалось при внесении изменений.

Чтобы проверить надежность полученных результатов, мы провели такой же эксперимент на более сложной модели с большей разрешающей способностью. Результаты оказались схожи. Правда, через шесть часов на видоизмененной модели возобновились сильные ветры, поэтому понадобились дополнительные вмешательства, чтобы уберечь южную Флориду. Вероятно, чтобы держать под контролем ураган в течение определенного промежутка времени, необходимо запускать серию запланированных возмущений.

Кто остановит дождь?

Если результаты наших исследований состоятельны и небольшие изменения температуры воздуха в ураганном вихре действительно могут повлиять на его курс или ослабить силу ветра, то встает вопрос: как этого достичь? Невозможно сразу нагреть или остудить такое обширное атмосферное образование, как ураган. Однако можно подогревать воздух вокруг урагана и таким образом регулировать температурный режим.

Наша команда планирует провести вычисление точной структуры и силы подогрева атмосферы, необходимого для снижения интенсивности урагана и изменения его курса. Несомненно, практическая реализация такого проекта потребует огромного количества энергии, но ее можно получить с помощью орбитальных солнечных электростанций. Вырабатывающие энергию спутники следует оснастить гигантскими зеркалами, фокусирующими солнечное излучение на элементах солнечной батареи. Собранную энергию затем можно будет переправить на микроволновые приемники на Земле. Современные конструкции космических солнечных станций способны распространять микроволны, не нагревающие атмосферу и поэтому не теряющие энергию. Для управления погодой важно направить из космоса микроволны тех частот, при которых они лучше поглощаются водяным паром. Различные слои атмосферы можно будет нагреть согласно заранее продуманному плану, а области внутри урагана и ниже дождевых облаков будут защищены от нагрева, т.к. дождевые капли хорошо поглощают СВЧ-излучение.

В нашем предыдущем эксперименте система 4DVAR определила большие температурные перепады там, где нельзя применить микроволновой нагрев. Поэтому было решено вычислить оптимальные возмущения при условии, что температура воздуха в центре должна оставаться постоянной. Мы получили удовлетворительный результат, но, чтобы компенсировать неизменность температуры в центре, пришлось значительно изменить ее в других местах. Интересно, что в процессе развития модели температура в центре циклона менялась очень быстро.

Другой способ подавления сильных тропических циклонов — непосредственное ограничение поступающей в них энергии. Например, поверхность океана можно было бы покрыть тонкой, биологически разлагающейся масляной пленкой, которая способна приостанавливать испарение. Кроме того, можно оказывать влияние на циклоны за несколько дней до их подхода к берегу. Крупномасштабную перестройку структуры ветров следует предпринимать на высоте полета реактивных самолетов, где изменение атмосферного давления сильно влияет на мощность и траекторию ураганов. Например, образование инверсионных следов самолетов наверняка может вызвать требуемые возмущения начального состояния циклонов.

Кто встанет у штурвала?

Если в будущем метеорологи научатся управлять ураганами, то скорее всего возникнут серьезные политические проблемы. Несмотря на то что с 1970-х гг. Конвенцией ООН запрещено использовать погоду в качестве оружия, некоторые страны могут не устоять перед искушением.

Впрочем, наши методы еще предстоит опробовать на безобидных по сравнению с ураганами атмосферных явлениях. Прежде всего следует опробовать экспериментальные возмущения для усиления осадков на сравнительно небольшой территории, контролируемой измерительными приборами. Если понимание физики облаков, их цифровое моделирование, методика сравнительного анализа и компьютерные технологии будут развиваться нынешними темпами, то наш скромный опыт может быть претворен в жизнь. Кто знает, быть может, уже через 10-20 лет многие страны займутся крупномасштабным управлением погодой с использованием подогрева атмосферы из космоса.

Ввиду места проживания мне посчастливилось не наблюдать за стихийными бедствиями . Но, тем не менее, это вовсе не говорит о том, что их не существует. Наш мир подвержен опасным, губительным катаклизмам природы. Они бывают очень опасными не только для человека, но и для всего живого. Поэтому такие природные явления и именуют катастрофическими.

Какими бывают катастрофы природы:

  • землетрясения;
  • извержение вулканов;
  • ураганы;
  • смерчи;
  • лавины;
  • цунами.

Наверняка и точно предсказать данные бедствия невозможно. Поэтому самый интересующий вопрос, беспокоящий каждого человека: какие меры следует принимать для борьбы со стихийными явлениями?


Землетрясения

Именно землетрясения, благодаря своей внезапности, уносят наибольшее количество жизней и производят самые страшные разрушения. Нужно уметь заранее прогнозировать землетрясения, также создать качественную службу оповещения населения, в сейсмоактивных зонах строить инфраструктуру с огромными требованиями для устойчивости. Еще древние китайцы придумали инструмент, который реагировал на колебания земли - при толчках шарик выпадал из пасти дракона в рот лягушки, предупреждая людей о возможном землетрясении.


Извержение вулкана

Второе место по нанесению ущерба человеку занимают вулканические извержения . К счастью, они бывают разной силы, поэтому к гибели людей и животных ведет далеко не каждое из них. Нужно очень внимательно прислушиваться к оповещающим службам , чтобы поскорее уехать из опасной зоны.


Другие природные бедствия

Не менее опасны ураганы и смерчи , они забирают с собой неимоверное количество человеческих жизней. Однако о них можно предупредить, поэтому многое зависит от того, как быстро местные власти сумеют оповестить население о надвигающейся катастрофе, а люди - покинуть опасный район. Об опасности близости цунами люди, благодаря определенным службам, тоже могут быть предупреждены. Этому способствует создание автоматизированной системы , благодаря современным каналам связи и спутниковым станциям . А вот спасение от лавин целиком зависит от того, насколько серьезно человек относится к предупреждениям специальных служб о грозящей беде. Для борьбы с лавинами появляются системы защиты , такие как снегозащитные щиты , строгий запрет вырубки лесов на склонах, где повышена вероятность схода снежных потоков.


Таким образом, каждый человек должен иметь представление, какие меры следует принимать для борьбы со стихийными явлениями. А также о том, как себя вести в той или иной ситуации.