Свойства живых организмов. Общие свойства живых организмов Свойства характерные живых организмов

Таки образом, жизнь – это одна из форм существования материи. Живому характерен рядом свойств, которые отличают их от неживого.

Любая живая система обладает тремя фундаментальными свойствами: самообновление, самовоспроизведение и саморегуляция.

Самообновление – способность организмов постоянно обновлять структурные элементы – молекулы, ферменты, органоиды, клетки – путем замены «износившихся», выполнивших свои функции (форменные элементы крови, клетки эпидермиса кожи и т. д.). При этом организмы используют вещества и энергию, которые поступают в клетки (поток вещества и энергии ). Самообновление обеспечивают обмен веществ и энергии , реакции матричного синтеза , дискретность .

Самовоспроизведение – способность живых организмов производить себе подобных с сохранением у потомков строения и функций родительских форм. При размножении живых организмов потомство обычно похоже на родителей: кошки рожают котят, собаки - щенков. Из семян одуванчика опять вырастет одуванчик. Размножение и обеспечивает свойство самовоспроизведения. Процесс самовоспроизведения осуществляется практически на всех уровнях организации. Благодаря репродукции не только целые организмы, но и клетки, органоиды клеток (митохондрии, пластиды) после деления сходны со своими предшественниками. Из одной молекулы ДНК при ее удвоении образуются две дочерние молекулы, полностью повторяющие исходную. В основе самовоспроизведения лежат реакции матричного синтеза , т. е. образование новых молекул и структур на основе информации (поток информации ), заложенной в последовательности нуклеотидов ДНК. Следовательно, самовоспроизведение тесно связано с явлением наследственности .

Саморегуляция – способность организмов в непрерывно меняющихся условиях окружающей среды поддерживать постоянство своего химического состава и интенсивность течения физиологических процессов (гомеостаз ) на основе потока вещества, энергии и информации. При этом недостаток поступления питательных веществ мобилизует внутренние ресурсы организма, а избыток вызывает запасание этих веществ. Саморегуляция осуществляется разными путями благодаря деятельности регуляторных систем – нервной и эндокринной – и основана на принципе обратных связей : сигналом для включения той или иной системы может быть изменение концентрации какого-либо вещества или состояния какой-либо системы. Так, повышение концентрации глюкозы в крови приводит к усилению выработки гормона поджелудочной железы инсулина, уменьшающего содержание этого сахара в крови; снижение уровня глюкозы в крови замедляет выделение гормона в кровяное русло. Уменьшение числа клеток в ткани (при пилинге, дермабразии кожи, в результате травмы) вызывает усиленное размножение оставшихся клеток; восстановление нормального количества клеток дает сигнал о прекращении интенсивного клеточного деления).


Из других свойства, характерных для живого, некоторые в той или иной мере похожи на процессы, протекающие в неживой природе.

Единство химического состава. Живые организмы достаточно четко отграничены от неживого своим химическим составом (нуклеиновые кислоты, белки, углеводы, жиры и т. д.). Живые существа состоят из тех же элементов, что и объекты неживой природы. Но они образуют в организме сложные молекулы, в неживой природе не встречающиеся. Кроме того, различны и соотношения этих элементов в живом и неживом. Если элементарный состав неживой природы наряду с кислородом представлен кремнием, железом, магнием, алюминием и т. д., то в живых организмах 98% химического состава приходится только на четыре элемента – углерод, азот, водород и кислород.

Обмен веществ и энергии . Это общее свойство всего живого представляет собой совокупность всех химических превращений, происходящих в организме и обеспечивающих сохранение и воспроизведение жизни. Организм потребляет из окружающей среды вещества и энергию, использует их для обеспечения химических реакций, а затем возвращает в среду эквивалентное количество энергии и вещества, но уже в другой форме. Организм – открытая система, находящаяся в стационарном состоянии: скорость поступления веществ и энергии из среды уравновешивается скоростью переноса веществ и энергии из системы. Обмен веществ и энергии обеспечивает постоянство химического состава и строения всех частей организма и, как следствие, постоянство их функционирования в непрерывно меняющихся условиях окружающей среды. Другие признаки – рост, раздражимость, наследственность, изменчивость, размножение – все это результат обмена веществ и его проявление.

Наследственность . Заключается в способности организмов передавать свои признаки, свойства и особенности развития из поколения в поколение. Она обусловлена стабильностью, т. е. постоянством строения молекул ДНК.

Изменчивость . Это свойство как бы противоположно наследственности, но вместе с тем тесно связано с ней, так как при этом изменяются гены, определяющие развитие тех или иных признаков. Если бы репродукция матриц – молекул ДНК – всегда происходила с абсолютной точностью, то при размножении организмов осуществлялась бы преемственность только существовавших прежде признаков, и приспособление видов к меняющимся условиям среды оказалось бы невозможным. Следовательно, изменчивость – это способность организмов приобретать новые признаки и свойства, в основе которой лежат изменения молекул ДНК. Таким образом, самоудвоение молекул ДНК делает возможным не только сохранение у потомков наследственных особенностей родителей, но и отклонение от них, т. е. изменчивость, в результате которой организмы приобретают новые признаки и свойства. Изменчивость создает разнообразный материал для естественного отбора, т. е. отбора наиболее приспособленных особей к конкретным условиям существования в природных условиях, что, в свою очередь, приводит к появлению новых форм жизни, новых видов организмов.

Рост и развитие . Новый организм возникает из особо устроенных половых клеток и реализует полученную наследственную информацию в ходе роста и развития. Развитие – необратимое направленное закономерное изменение объектов живой и неживой природы. В результате развития возникает новое качественное состояние объекта, вследствие которого изменяется его состав или структура. Развитие живых организмов представлено онтогенезом (индивидуальным развитием) и филогенезом (историческим развитием) . На протяжении онтогенеза постепенно и последовательно проявляются индивидуальные свойства организма (проявление цвета глаз, способность держать голову, сидеть, ходить, появление зубов и т. д. у детей). Развитие сопровождается ростом – процессом увеличения количества клеток и накоплением массы внеклеточных образований в результате обмена веществ. Независимо от способа размножения (бесполое или половое) все дочерние особи образующиеся из одной зиготы, споры, почки или клетки, получают по наследству только генетическую информацию, т. е. возможность проявлять те или иные признаки и свойства. В процессе развития возникает специфическая структурная организация индивида, а увеличение его массы обусловлено репродукцией макромолекул, элементарных структур клеток и самих клеток. При смене многочисленных поколений происходит изменение видов, или филогенез (эволюция) – это необратимое и направленное развитие живой природы, сопровождающееся образованием новых видов и прогрессивным усложнением жизни.

Раздражимость . В процессе эволюции у организмов выработалось свойство избирательно реагировать на воздействия внешней среды – раздражимость. Всякое изменение условий среды, окружающих организм, представляет собой по отношению к организму раздражение , а его реакция на внешние раздражители служит показателем его чувствительности и проявлением раздражимости. Наиболее яркой формой проявления раздражимости является движение . У растений – это тропизмы и настии , у протист – таксисы ; реакции многоклеточных организмов - рефлексы , осуществляющиеся посредством нервной системы.

Дискретность и целостность . Дискретность – это всеобщее свойство материи: каждый атом состоит из элементарных частиц, атомы образуют молекулу. Простые молекулы входят в состав сложных соединений или кристаллов и т. д.. Живые системы резко отличаются от неживых объектов своей исключительной сложностью и высокой структурной и функциональной упорядоченностью. В то же время отдельный организм, или иная биологическая система (вид, биогеоценоз и др.), дискретен и целостен, т. е. состоит из отдельных изолированных (обособленных и отграниченных в пространстве), но в тем не менее тесно связанных и взаимодействующих между собой частей, образующих функциональное единство. Любой вид организмов включает отдельные особи. Тело высокоорганизованной особи образует пространственно отграниченные органы, которые, в свою очередь, состоят из отдельных клеток. Энергетический аппарат клетки представлен митохондриями, аппарат синтеза белка – рибосомами и т. д. вплоть до макромолекул (белки, нуклеиновые кислоты и т. д.), каждая из которых может выполнять свою функцию, лишь будучи пространственно изолированной от других. Дискретность строения организма – основа его структурной упорядоченночти, она создает возможность постоянного самообновления его путем замены «износившихся» структурных элементов без прекращения выполняемой функции. Дискретность вида определяет возможность его эволюции путем гибели или устранения из размножения неприспособленных особей и сохранения индивидов с полезными для выживания признаками.

Постулатами теории биологической эволюции являются три свойства живых организмов - индивидуальная изменчивость, наследственность и борьба за существование.

Свойства:

Единство химического состава живых существ

Живые организмы образованы молекулами органических и неорганических веществ. Основную массу органических веществ клетки составляют белки, жиры, углеводы, нуклеиновые кислоты, АТФ и другие вещества. Неорганические вещества клетки - вода, минеральные соли и др. Молекулы органических веществ образуют органоиды клетки. Вода с растворенными в ней веществами составляет внутреннюю среду клетки.

В состав живых организмов входят те же химические элементы, что и в объекты неживой природы. Однако соотношение элементов в живом и неживом неодинаково. В живых организмах 98 % химического состава приходятся на четыре элемента: углерод, кислород, азот и водород.

Обмен веществ и энергии это общее свойство всего живого, которое лежит в основе поддержания жизни. Живые организмы способны поглощать определенные вещества из окружающей среды, преобразовывать их, получать энергию за счет этих преобразований и выделять ненужные остатки этих веществ обратно в окружающую среду. Обмен веществ (метаболизм) делится на пластический (запасание веществ) и энергетический (расщепление веществ). Для извлечения энергии вещества разлагаются, для ее запасания они синтезируются. Причем, синтез собственных веществ, из которых строятся тела живых организмов, тоже протекает с затратами энергии и является частью пластического обмена (анаболизма).

Как физиологическое понятие обмен веществ включает в себя несколько не связанных на первый взгляд процессов: питание и пищеварение у животных и фотосинтез у растений, дыхание и выделение (включая потоотделение) у млекопитающих. Именно в ходе этих процессов организмы обеспечивают себя не только необходимыми веществами, но и энергией. У человека, как вы знаете, обмен веществ и другие процессы контролируются нервной и эндокринной системами. Это основа следующего свойства живого.

Важный признак живых систем - использование внешних источников энергии в виде пищи, света и др . Через живые системы проходят потоки веществ и энергии, вот почему они открытые. Основу обмена веществ составляют взаимосвязанные и сбалансированные процессы ассимиляции, т.е. процессы синтеза веществ в организме, и диссимиляции, в результате которых сложные вещества и соединения распадаются на простые и выделяется энергия, необходимая для реакций биосинтеза. Обмен веществ обеспечивает относительное постоянство химического состава всех частей организма.

Существование каждой отдельно взятой биологической системы ограничено во времени; поддержание жизни связано с самовоспроизведением . Любой вид состоит из особей, каждая из которых рано или поздно перестанет существовать, но благодаря самовоспроизведению жизнь вида не прекращается. В основе самовоспроизведения лежит образование новых молекул и структур, которое обусловлено информацией, заложенной в нуклеиновой кислоте ДНК. Самовоспроизведение тесно связано с явлением наследственности: любое живое существо рождает себе подобных.


Наследственность заключается в способности организмов передавать свои признаки, свойства и особенности развития из поколения в поколение. Она обусловлена относительной стабильностью, т.е. постоянством строения молекул ДНК.

Саморегуляция - это способность живых систем автоматически устанавливать и поддерживать на определенном уровне свои показатели (физиологические и др.). Только живое может реагировать на изменения окружающей среды таким образом, что показатели внутренней среды остаются постоянными, не изменяются. Так, гормон инсулин понижает количество глюкозы в крови, если ее становится много, а глюкагон и адреналин повышают количество глюкозы при ее недостатке.

У теплокровных животных существуют многочисленные механизмы терморегуляции поддержания температуры тела на определенном постоянном уровне вне зависимости от температуры окружающей среды. Это интенсивное потоотделение и расширение капилляров кожи для охлаждения и их сужение для согревания.

В природных сообществах происходит саморегуляция численности растений и животных. Например, количество хищников находится в определенной зависимости от количества их жертв. Если хищников становится больше, то они поедают слишком много жертв и затем сами погибают от голода, давая таким образом возможность уцелевшим жертвам размножиться до нормального уровня.

Раздражимость - способность живых систем реагировать на внешние или внутренние воздействия (изменения). В организме человека раздражимость часто связана со свойством нервной, мышечной и железистой тканей осуществлять ответную реакцию в виде выработки нервного импульса, мышечного сокращения или секреции веществ (слюны, гормонов и т. д.). У живых организмов, лишенных нервной системы, раздражимость может проявляться в движениях. Так, амебы и другие простейшие покидают неблагоприятные растворы с высокой концентрацией соли. А растения изменяют положение побегов для максимального поглощения света (тянутся к свету).

Возбудимость - способность живых систем отвечать на действие раздражителя. А возбуждение конкретная ответная реакция, возникающая в итоге раздражения и возбудимости. Нервные, мышечные и железистые ткани относятся к возбудимым, а костная, например, I шт. Костные клетки не отвечают на воздействие изменением заряда мембраны, немедленным синтезом и выделением веществ или сокращением. Одной из завершенных реакций на раздражимость и возбудимость является движение в пространстве.

Движение способность к перемещению. Это тоже общее свойство живого, хотя, на первый взгляд, кажется, что некоторые организмы его лишены. В любой живой эукариотической клетке происходит движение цитоплазмы. Даже прикрепленные животные обычно способны к небольшим движениям. Растениям свойственны «ростовые» движения, которые осуществляются за счет увеличения числа или размеров клеток.

Размножение - общее свойство организмов, обеспечивающее непрерывность жизни в ряду поколений, т. е. исторически. Это не простая способность к самокопированию. В ходе размножения сохраняются свойства и признаки исходного материнского (предкового) организма. Но наряду с этим проявляется изменчивость.

Размножение клеток в многоклеточном организме лежит в основе их роста. Рост одноклеточных достигается за счет обмена веществ и увеличения объема цитоплазмы и количества органоидов.

Способность живых организмов реагировать на внешние воздействия является одним из его важнейших свойств, с которым он появляется на свет. Какое значение имеет эта способность для всего живого? Давайте узнаем подробнее.

Понятие "раздражимость"

С точки зрения физиологии раздражимостью считается любая реакция организма на воздействие окружающей среды. Поскольку условия существования постоянно изменяются, ее обитатели должны успеть приспособиться к ним, чтобы выжить. Это врожденное свойство нервной системы. Хотя представители живой природы, которые его не имеют, также весьма активно реагируют на внешние воздействия.

Таксисы растений

Способность живых организмов реагировать на внешние воздействия характерна и для растений. И это при том, что они не имеют нервной системы. Попробуйте дотронуться до листьев кустарника мимозы - буквально на ваших глазах они начнут складываться в ответ на механическое раздражение. Это и есть проявление раздражимости в виде двигательных реакций - таксисов. Естественно, растения не преодолевают значительных расстояний. Их движения являются ростовыми и возникают в ответ на ряд факторов. Ими могут быть освещение, сила тяжести, давления или химических соединений. Проверить существование таксисов очень просто. Для этого просто поверните комнатное растение от света, и через некоторое время его листовые пластинки снова расположатся в его направлении.

Инстинкты и рефлексы животных

А вот способность живых организмов реагировать на внешние воздействия у многоклеточных животных обусловлена наличием нервной системы. Она состоит из специализированных клеток, которые называются нейронами. В них в результате внешнего воздействия возникают электрические импульсы. По отросткам они передаются в центры головного мозга, где анализируются. После этого сигналы передаются обратно к рабочим органам. Происходит этот процесс практически мгновенно. Такие ответные реакции организмов животных на раздражение называют рефлексами. Они могут быть двух видов.

Врожденные обеспечивают жизнедеятельность организма с момента его появления на свет. Это дыхательный, сосательный, хватательный, мигательный, защитный рефлексы. Некоторые реакции формируются у животных только на протяжении жизни. Это приобретенные рефлексы. Например, собаку можно приучить выполнять действие после определенной команды. У многих животных с рождения формируется система сложных поведенческих реакций - инстинкт. Это брачное поведение, забота о потомстве, перелеты птиц, миграции, строительство сот насекомыми и др.

Также способны реагировать на изменение условий окружающей среды. Происходит это в виде таксисов, как и у растений. Если на предметное стекло, на котором находятся инфузории, нанести по капле соленой и пресной воды, то простейшее начнет двигаться по направлению ко второй. Движение может осуществляться как от источника раздражения, так и к нему. К примеру, одноклеточная водоросль хламидомонада движется по направлению к источнику солнечного света. Это обеспечивает лучшие условия для осуществления процесса фотосинтеза.

Реакция на внешнее воздействие: значение для живых организмов

Прежде всего способность всех живых организмов определенным образом отвечать на воздействия окружающей среды имеет защитное значение. У животных нервная регуляция осуществляется очень быстро. Благодаря этому они немедленно реагируют на различные раздражители. Наряду с нервной для животных характерна и функций. Она осуществляется при помощи желез внутренней секреции. Ее действие проявляется гораздо медленнее. Например, железа гипофиз выделяет гормон роста на протяжении многих лет, в течение которых постепенно происходят количественные изменения в организме. В своей совокупности нервная и гуморальная регуляция представляют собой слаженную и совершенную систему работы и раздражимость организмов.

Итак, ответная реакция всего живого на раздражители обеспечивает условия для их существования, защиту и основу адаптации. Способность живых организмов реагировать на внешние воздействия проявляется в виде таксисов и рефлексов.

Живой организм - это главный предмет, который изучает такая наука, как биология. Он представляет собой состоящую из клеток, органов и тканей. Живой организм - это тот, который обладает целым рядом характерных признаков. Он дышит и питается, шевелится или движется, а также имеет потомство.

Наука о живой природе

Термин «биология» был введен Ж.Б. Ламарком - французским натуралистом - в 1802 г. Примерно в то же время и независимо от него такое название науке о живом мире дал немецкий ботаник Г.Р. Тревиранус.

Многочисленные разделы биологии рассматривают многообразие не только существующих в настоящее время, но и уже вымерших организмов. Они изучают их происхождение и эволюционные процессы, строение и функционирование, а также индивидуальное развитие и связи с окружающей средой и друг с другом.

Разделы биологии рассматривают частные и общие закономерности, которые присущи всему живому во всех свойствах и проявлениях. Это касается и размножения, и обмена веществ, и наследственности, и развития, и роста.

Начало исторического этапа

Первые живые организмы на нашей планете по своему строению значительно отличались от существующих в настоящее время. Они были несравненно проще. На протяжении всего этапа формирования жизни на Земле происходил Он способствовал улучшению строения живых существ, что позволяло им приспосабливаться к условиям окружающего мира.

На первоначальном этапе живые организмы в природе питались только органическими компонентами, возникшими из первичных углеводов. На зарей своей истории и животные, и растения представляли собой мельчайшие одноклеточные существа. Они были похожи на нынешних амеб, сине-зеленых водорослей и бактерий. В ходе эволюции стали появляться многоклеточные организмы, которые были намного разнообразнее и сложнее своих предшественников.

Химический состав

Живой организм - это тот, который образован молекулами неорганических и органических веществ.

К первым из этих компонентов относится вода, а также минеральные соли. находящиеся в клетках живых организмов, представляют собой жиры и белки, нуклеиновые кислоты и углеводы, АТФ и многие другие элементы. Стоит заметить тот факт, что живые организмы в своем составе содержат те же компоненты, которые имеются и у объектов Главное отличие состоит в соотношении данных элементов. Живые организмы - это те, девяносто восемь процентов состава которых приходится на водород, кислород, углерод и азот.

Классификация

Органический мир нашей планеты насчитывает на сегодняшний день практически полтора миллиона разнообразных видов животных, полмиллиона видов растений, а также десять миллионов микроорганизмов. Такое многообразие невозможно изучить без подробной его систематизации. Классификация живых организмов впервые была разработана шведским натуралистом Карлом Линнеем. В основу своего труда он положил иерархический принцип. Единицей систематизации стал вид, название которому было предложено давать только на латинском языке.

Классификация живых организмов, используемая в современной биологии, указывает на родственные связи и эволюционные взаимоотношения органических систем. При этом сохранен принцип иерархии.

Совокупность живых организмов, имеющих общее происхождение, одинаковый хромосомный набор, приспособленных к схожим условиям, обитающих в определенном ареале, свободно скрещивающихся между собой и дающих потомство, способное к размножению, и представляет собой вид.

Существует и еще одна классификация в биологии. Этой наукой все клеточные организмы подразделяются на группы по наличию или отсутствию оформленного ядра. Это

Первую группу представляют безъядерные примитивные организмы. В их клетках выделяется ядерная зона, но содержит она только молекулу. Это бактерии.

Истинными ядерными представителями органического мира являются эукариоты. Клетки живых организмов этой группы обладают всеми основными структурными компонентами. Четко оформлено у них и ядро. В эту группу входят животные, растения и грибы.

Строение живых организмов может быть не только клеточным. Биология изучает и другие формы жизни. К ним относятся неклеточные организмы, такие, как вирусы, а также бактериофаги.

Классы живых организмов

В биологической систематике существует ранг иерархической классификации, который ученые считают одним из основных. Он выделяет классы живых организмов. К основным из них относятся следующие:

Бактерии;

Животные;

Растения;

Водоросли.

Описание классов

Бактерия представляет собой живой организм. Это одноклеточное, которое размножается делением. Клетка у бактерии заключена в оболочку и имеет цитоплазму.

К следующему классу живых организмов относятся грибы. В природе насчитывается около пятидесяти тысяч видов этих представителей органического мира. Однако биологи изучили только пять процентов от их общего количества. Интересно, что грибам присущи некоторые признаки как растений, так и животных. Важная роль живых организмов этого класса заключена в способности разлагать органический материал. Именно поэтому грибы можно найти практически во всех биологических нишах.

Большим разнообразием может похвастаться животный мир. Представителей этого класса можно найти в таких зонах, где, казалось бы, отсутствуют условия для существования.

Наиболее высокоорганизованным классом являются теплокровные животные. Свое название они получили от способа, которым вскармливают потомство. Все представители млекопитающих делятся на копытных (жираф, лошадь) и хищных (лиса, волк, медведь).

Представителями животного мира являются и насекомые. Их на Земле существует огромное множество. Они плавают и летают, ползают и скачут. Многие из насекомых имеют такие маленькие размеры, что не способны противостоять даже водному натяжению.

Одними из первых позвоночных животных, вышедших в далекие исторические времена на сушу, явились амфибии и рептилии. До сих пор жизнь представителей этого класса связана с водой. Так, ареал обитания взрослых особей - суша, а их дыхание осуществляется легкими. Личинки же дышат жабрами и плавают в воде. В настоящее время на Земле насчитывается около семи тысяч видов этого класса живых организмов.

Уникальными представителями фауны нашей планеты являются птицы. Ведь в отличие от других животных они способны летать. На Земле обитает практически восемь тысяч шестьсот видов птиц. Для представителей этого класса характерно оперение и откладывание яиц.

К огромной группе позвоночных животных принадлежат рыбы. Они обитают в водоемах и обладают плавниками и жабрами. Биологи подразделяют рыб на две группы. Это хрящевые и костные. В настоящее время насчитывается порядка двадцати тысяч различных видов рыб.

Внутри класса растений существует собственная градация. Представителей флоры подразделяют на двудольных и однодольных. У первой из этих групп в семени располагается зародыш, состоящий из двух семядолей. Определить представителей этого вида можно по листьям. Они пронизаны сеточкой из жилок (кукуруза, свекла). Зародыш обладает только одной семядолей. На листьях таких растений жилки располагаются параллельно (лук, пшеница).

Класс водоросли насчитывает более тридцати тысяч видов. Это обитающие в воде споровые растения, которые не имеют сосудов, но обладают хлорофиллом. Данный компонент способствует осуществлению процесса фотосинтеза. Водоросли не образуют семян. Их размножение происходит вегетативным путем или спорами. От высших растений этот класс живых организмов отличается отсутствием стеблей, листьев и корней. Они обладают только так называемым телом, которое именуется слоевищем.

Функции, присущие живым организмам

Что является основополагающим для любого представителя органического мира? Это осуществление процессов обмена энергии и веществ. В живом организме идет постоянное превращение различных веществ в энергию, а также происходят физические и химические изменения.

Эта функция является непременным условием существования живого организма. Именно благодаря метаболизму мир органических существ отличается от неорганических. Да, в неживых объектах также происходят изменения вещества и превращение энергии. Однако эти процессы имеют свои принципиальные отличия. Обмен веществ, который происходит в неорганических объектах, разрушает их. В то же время живые организмы без обменных процессов не могут продолжить свое существование. Следствием метаболизма является обновление органической системы. Прекращение процессов обмена влечет за собой смерть.

Функции живого организма разнообразны. Но все они напрямую связаны с происходящими в нем обменными процессами. Это может быть рост и размножение, развитие и пищеварение, питание и дыхание, реакции и движение, выделение отработанных продуктов и секреция и т.д. В основе любой функции организма лежит совокупность процессов превращения энергии и веществ. Причем в равной степени это имеет отношение к возможностям как ткани, клетки, органа, так и всего организма.

Обмен веществ у человека и животных включает процессы питания и пищеварения. У растений он осуществляется при помощи фотосинтеза. Живой организм при осуществлении метаболизма снабжает себя веществами, необходимыми для существования.

Важной отличительной чертой объектов органического мира является использование внешних энергетических источников. Примером тому могут служить свет и пища.

Свойства, присущие живым организмам

Любая биологическая единица имеет в своем составе отдельные элементы, которые, в свою очередь, образуют неразрывно связанную систему. Например, в совокупности все органы и функции человека представляют собой его организм. Свойства живых организмов многообразны. Помимо единого химического состава и возможности осуществления обменных процессов объекты органического мира способны к организации. Из хаотичного молекулярного движения образуются определенные структуры. Это создает для всего живого определенную упорядоченность во времени и пространстве. Структурная организация представляет собой целый комплекс сложнейших саморегулирующихся которые протекают в определенном порядке. Это позволяет поддержать на необходимом уровне постоянство внутренней среды. Например, гормон инсулин снижает количество в крови глюкозы при ее избытке. При недостатке этого компонента его восполняет адреналин и глюкагон. Также теплокровные организмы обладают многочисленными механизмами теплорегуляции. Это и расширение кожных капилляров, и интенсивное потоотделение. Как видим, это важная функция, которую выполняет организм.

Свойства живых организмов, характерные только для органического мира, заключены и в процессе самовоспроизведения, ведь существование любой имеет временное ограничение. Поддержать жизнь может только самовоспроизведение. В основе этой функции лежит процесс образования новых структур и молекул, обусловленный той информацией, которая заложена в ДНК. Самовоспроизведение неразрывно связано с наследственностью. Ведь каждое из живых существ рождает подобных себе. Через наследственность живые организмы передают свои особенности развития, свойства и признаки. Это свойство обусловлено постоянством. Оно существует в строении молекул ДНК.

Еще одним свойством, характерным для живых организмов, является раздражимость. Органические системы всегда реагируют на внутренние и внешние изменения (воздействия). Что касается раздражимости человеческого организма, то она неразрывно связана со свойствами, присущими мышечной, нервной, а также железистой ткани. Эти компоненты способны дать толчок ответной реакции после мышечного сокращения, отправления нервного импульса, а также секреции различных веществ (гормонов, слюны и т.д.). А если лишен нервной системы живой организм? Свойства живых организмов в виде раздражимости проявляются в таком случае движением. Например, простейшие покидают растворы, в которых концентрация соли слишком высока. Что касается растений, то они способны изменить положение побегов для того, чтобы максимально поглощать свет.

Любые живые системы могут ответить на действие раздражителя. Это является еще одним свойством объектов органического мира - возбудимостью. Данный процесс обеспечивается мышечными и железистыми тканями. Одной из завершающих реакций возбудимости является движение. Способность к перемещению является общим свойством всего живого, несмотря на то, что внешне некоторые организмы его лишены. Ведь движение цитоплазмы происходит в любой клетке. Перемещаются и прикрепленные животные. Ростовые движения за счет увеличения количества клеток наблюдаются у растений.

Среда обитания

Существование объектов органического мира возможно только при определенных условиях. Некоторая часть пространства неизменно окружает живой организм или целую группу. Это и есть среда обитания.

В жизни любого организма органические и неорганические составляющие природы играют значительную роль. Они производят на него определенное воздействие. Живые организмы вынуждены приспосабливаться к существующим условиям. Так, некоторые из животных могут жить в районах Крайнего Севера при очень низких температурах. Другие же способны существовать только в зоне тропиков.

На планете Земля различают несколько сред обитания. Среди них такие:

Наземно-водная;

Наземная;

Почвенная;

Живой организм;

Наземно-воздушная.

Роль живых организмов в природе

Жизнь на планете Земля существует уже три миллиарда лет. И в течение всего этого времени организмы развивались, изменялись, расселялись и одновременно воздействовали на среду своего обитания.

Влияние органических систем на атмосферу вызвало появление большего количества кислорода. При этом значительно снизился объем углекислого газа. Основным источником выработки кислорода служат растения.

Под влиянием живых организмов изменился и состав вод Мирового океана. Органическое происхождение имеют некоторые горные породы. Полезные ископаемые (нефть, уголь, известняк) - это также результат функционирования живых организмов. Другими словами, объекты органического мира являются мощным фактором, который преобразует природу.

Живые организмы являются своеобразным индикатором, указывающим на качество окружающей человека среды. Они связаны сложнейшими процессами с растительностью и почвой. При потере хотя бы единственного звена из этой цепочки произойдет дисбаланс экологической системы в целом. Именно поэтому для круговорота энергии и веществ на планете важно сохранить все существующее многообразие представителей органического мира.

Биология является наукой, изучающей жизнь во всех направлениях и общие свойства живого.

По Энгельсу, жизнь – способ существования белковых тел, существенным моментом которого явл. постоянный обмен веществ с окружающей средой, с прекращением которого прекращается и жизнь, что приводит к распаду белков.

Современное определение: живые тела, существующие на Земле – открытые саморегулирующиеся и самовос­про­изводящиеся системы, построенные из биополимеров – белков и нуклеиновых кислот.

Для живых организмов характерны свойства, отличающие их от объектов неживой природы:

1. Определенный химический состав.

В состав живых организмов входят те же химические элементы, что и в неживые объекты, но в различных пропорциях. Из 100 элементов необходимы 20. Выделяют обязательные (органо­генные) элементы – водород, углерод, кислород, азот.

Так же важны натрий, калий, кальций, магний, сера, фосфор. Все организмы построены из белков, жиров, углеводов и нуклеиновых кислот.

2. Наличие клеточного строения (кроме бактерий).

Клетка – структурно-функциональная единица живого.

3. Обмен веществ и энергозависимость.

Живой организм – открытая устойчивая система, которая при поступлении энергии извне, находится в динамическом равновесии.

4. Способность к саморегуляции.

Гомеостаз – способность поддерживать постоянство химическо-физических свойств.

Показатели гомеостаза: температура, давление, количество воды, энергия, скорость обмен­ных процессов.

В тканях показатель гомеостаза – количество клеток.

В органах – интенсивность работы.

В популяциях – соотношение возрастных групп и половой состав.

5. Способность к самовоспроизведению.

a. Воспроизведение себе подобных.

b. Передача наследственной информации.

c. Главным переносчиком информации явл. хромосомы.

6. Наследственность.

Наследственность – способность живых организмов передавать признаки и свойства из поко­ления в поколение при помощи ДНК и РНК. Закономерности изучает генетика. Мен­дель предположил, что признаки определяются генами. Ген – участок молекулы ДНК, ко­дирую­щий первичную структуру белка.

Ген - белок - признак.

7. Изменчивость.

Изменчивость – способность живых организмов приобретать новые признаки и свойства в процессе индивидуального развития. Изменчивость создает материал для естественного от­бора.

8. Индивидуальное развитие.

Онтогенез – процесс индивидуального развития организма от момента оплодотворения до момента смерти. Развитие сопровождается ростом, продолжительность роста ограничена процессами старения.

Ι. Проэнтогенез-гаметогенез, оплодотворение.

ΙΙ. Эмбриональный период – рождение.

ΙΙΙ. Постэмбриональный – ювенильный, этап зрелости, этап старости.

9. Историческое развитие.

Филогенез – историческое развитие мира; необратимое и направленное развитие живой при­роды, сопровождающееся появлением новых видов и прогрессивным усложнением жизни. Все разнообразие видов растений и животных есть результат эволюции.

10. Раздражимость.

Раздражимость – способность живых организмов отвечать на внешние и внутренние раз­дра­жители специфическими реакциями.

фототропизм (поворот листьев в сторону солнца);

геотропизм (рост кончика корня по отношению к центру Земли);

таксис (однонаправленное движение К или ОТ источника раздражения);

рефлекс (свойство организма отвечать на действие раздражителей при обязательном уча­стии нервной системы).

11. Движение.

Организмы способны двигаться различными способами:

a. Амебоидная – с помощью ложноножек (амеба обыкновенная, лейкоциты);

b. Реактивная – с помощью выстреливания струи воды (медузы, головоногие мол­люски);

c. Ресничные – с помощью ресничек - выростов клетки, окруженных цитолеммой, (ин­фузо­рия-туфелька).

d. Жгутиковые – с помощью жгутика – выроста клетки, окруженного цитолеммой, но длин­нее реснички (эвглена зеленая, Вольвокс, сперматозоид).

e. С помощью сократительных мышц.

12. Ритмичность.

Ритмичность – повторение состояний организма через промежуток времени в ответ на из­ме­нения внешней среды. Биоритмы (эктогенные – внешние; эндогенные – внутренние).

13. Целостность и дискретность.

С одной стороны, живая природа целостна, организованна, подчиняется определенным за­ко­нам. С другой стороны, природа дискретна, т.е. любая биологическая система состоит из обособленных, но тесно связанных элементов.

Принцип дискретности лег в основу представлений об уровне организации живой материи.

Уровни организации живой природы.

Уровеньорганизации живой природы – функциональное место данной биологической системы опре­деленной степени сложности в общей системе живого.

Развитие уровней в процессе происхождения из низшего в высшее, с появлением более высшего уровня предыдущий не исчезал, а лишь утрачивал ведущую роль, входил в состав как подчинен­ная структура или функциональная единица.

Таблица№1. Уровни организации живого.

Название уровня Биосистема Понятие Элементы, обр. си­стему. Науки
Молекулярно-генетический. (обмен в-в и передача насл. информации) Биополимеры (белки, нукле­иновые кис­лоты, полиса­хариды). Биополимеры – сложные орга­нические вещества с огромной молекулярной массой, состоя­щие из мономеров. АК, нуклеотиды, моно­сахариды Генетика Мол. Био­логия Биохимия Биофизика
Клеточный. (кроме виру­сов) Клетка Клетка – структурно-функцио­нальная единица живого. Оболочка Цитоплазма Ядро Цитология
Организмен­ный. Подчиняет подуровни: Тканевый Органный. Ткань => Ор­ганы=> Си­стемы орга­нов=> Организм Ткань – совокупность клеток, сходных по строению, проис­хождению и выполняющие общие функции. Орган – часть тела, выполня­ющая определенные функции. Система органов – ряд органов, имеющих общий план строе­ния, единство происхождения и выполняющих одну большую функцию. Организм – любое существо, обладающее свойствами жи­вого. Клетки. Межклеточное в-во. Ткань. Системы органов Гистоло­гия Анатомия Физиоло­гия
Надорганизменные уровни
Популяционно-видовой. Подчиняет: Популяцион­ный Видовой Популяция Вид Популяция – совокупность особей одного вида, населяю­щих пространство с однород­ными условиями. Вид – совокупность популя­ций, особи которых занимают определенный ареал, способ­ные скрещиваться и давать плодовитое потомство. Особи Популяции Популя­цион­ная экология
Биогеоценоти­ческий Биогеоценоз (сообщество живых орга­низмов)+ Биотоп (уча­сток абиотиче­ской среды) Биогеоценоз – совокупность организмов разных видов, оби­тающих на определенной тер­ритории и взаимосвязанных между собой пространствен­ными и пищеварительными связями. Осн. функция – круговорот веществ и энергии, который заключается в превращении энергии Солнца во все виды энергии. Виды Экология со­обществ
Биосферный Биосфера Биосфера – оболочка Земли, заселенная живыми организ­мами, включает нижнюю часть атмосферы, всю гидросферу и верхнюю часть литосферы. Биогеоценозы Экология

Раздел 1.

Основы цитологии. Понятие цитологии. Предмет и задача цитологии.

Цитология – наука, изучающая строение, химический состав, развитие и функции, процессы воспро­изведения, восстановления и адаптации клетки к меняющимся условиям среды.

Цитология, как самостоятельная наука возникла в середине XΙX века с выхода в свет клеточной тео­рии Шлейдена и Шванна (1838-1839). За последние 20-30 лет из описательной науки превратилась в экспериментальную.

Задача современной цитологии: изучение детального строения клеток и их функционирования; ис­следование функций отдельных компонентов, воспроизведение клеток и приспособление к окружа­ющей среде.

Цитология – фундамент для ряда наук (анатомия, гистология, генетика, физиология, биохимия, эко­логия). Огромное значение цитология имеет для медицины т.к. любые заболевания имеют патологию конкретных клеток, что важно для понимания развития заболевания, диагностики, лечения и профи­лактики.

История развития цитологии.

Развитие цитологии связано с созданием и совершенствованием оптических устройств, позволяющих рассматривать и изучать клетки.

1610- голландский ученый Галилео Галилей сконструировал первый микроскоп, а после его усовер­шенствования в 1924 году его можно было использовать для первых исследований.

1665 – английский ученый Р. Гук с помощью увеличительных линз наблюдал в тонком срезе пробко­вой пластинки и назвал их клетками.

Во второй половине XVΙΙ века описания Гука легли в основу исследований анатомии растений Маль­пиге, который подтверждал теорию Гука.

1680 – голландский ученый Антони ван Левенгук открыл мир одноклеточных и увидел клетки жи­вотных. Открыл и описал эритроциты, сперматозоиды, клетки сердечной мышцы.

Дальнейший прогресс в изучении клетки связан с развитием микроскопии XΙX века. Изменились представления о строении клеток: главным в организации клетки стала считаться не клеточная стенка, а цитоплазма (Пуркине, 1830г).

В 30х годах XΙX века английский ученый английский ученый Броун обнаружил в клетках растений ядро и предложил термин «ядро». Обнаружил ядро в клетках грибов и животных. Эти и другие мно­гочисленные наблюдения позволили Шванну сделать ряд обобщений. Так Шванн показал, что клетки растений и животных принципиально схожи между собой. Шванном была сформулирована клеточная теория, т.к. при создании теории он пользовался трудами Шлейдена, то его так же считают создателем теории.