Расстояние между точками по координатам формула. Определение расстояние между двумя точками только по координатам longlat

Составить маршрут. Как проехать от и до. Расчет расстояний между городами на автомобиле, машине. Проложить маршрут на карте от и до самому между городами. Создать маршрут на машине по точкам на карте из нескольких точек. Калькулятор топлива. Расчет маршрута пешком, на велосипеде.

Создать маршрут на машине по точкам и распечатать. Навигатор онлайн поможет Вам создать маршрут, рассчитать расстояние пешком на карте, проложить маршрут от и до, вы узнаете сколько пешком нужно пройти из пукнта А в пункт Б или рассчитаете расстояние маршрут от точки А до точки В, также можно проложить маршрут через один дополнительный пункт, через который возможно будет проходить ваш маршрут. Вы сможете проложить карту маршрута рассчитать расстояние и время и увидеть данные этого маршрута прямо на карте, также покажет Вам погоду в месте прибытия, калькулятор топлива рассчитает расход бензина на 100 км. После нажатия на кнопку "Рассчитать" - справа появиться описание маршрута, по сути текстовый навигатор: если вы выбирали доп.пункт маршрута, навигатор разделит его участки и посчитает расстояние в каждом участке, а также рассчитает общее расстояние (километраж) от пункта отправления в пункт назначения, также отобразит время в пути. Навигатор онлайн покажет Вам как проехать от и до на машине, автомобиле по Москве, Санкт-Петербургу, СПБ, Владивостоку, Уфе, Челябинску, Казани, Новосибирску, Нижнему Новгороду, Омску, Екатеринбургу, Перми из пункта А в пункт Б. Проложить маршрут можно нескольких видов, в зависимости от способа передвижения, например пешком, на автомобиле, на транспорте (автобус, поезд, метро), на велосипеде (данный способ плохо работает в России из-за отсутствия велосипедных дорожек). Для этого нужно выбрать способ из выпадающего списка и вы с легкостью проложите маршрут и узнаете как доехать до пункта назначения. Здесь сможете узнать, как доехать на авто проложить путь и рассчитать расстояние

Как доехать проложить маршрут на машине до Москвы, Санкт-Петербурга, Новосибирска, Екатеринбурга, Нижнего Новгорода, Казани, Челябинска, Омска, Самары, Ростова-на-Дону, Уфы, Красноярска, Перми, Воронежа, Волгограда, Саратова, Краснодара, Тольятти, Тюмени, Ижевска, Барнаула, Иркутска, Ульяновска, Хабаровска, Владивостока, Ярославля, Махачкалы, Томска, Оренбурга, Новокузнецка, Кемерово, Астрахани, Рязани, Набережные Челны, Пензы, Липецка, Кирова, Тулы, Чебоксар, Калининграда, Курска, Улан-Удэ, Ставрополя, Магнитогорска, Сочи, Белгорода, Нижнего Тагила, Владимира, Архангельска, Калуги, Сургута, Читы, Грозного, Стерлитамака, Костромы, Петрозаводска, Нижневартовска, Йошкар-Олы, Новороссийска


Расстояние от точки до точки - это длина отрезка, соединяющего эти точки, в заданном масштабе. Таким образом, когда речь идет об измерении расстояния, то требуется знать масштаб (единицу длины), в котором будут проводиться измерения. Поэтому, задачу нахождения расстояния от точки до точки обычно рассматривают либо на координатной прямой, либо в прямоугольной декартовой системе координат на плоскости или в трехмерном пространстве. Другими словами, наиболее часто приходится вычислять расстояние между точками по их координатам.

В этой статье мы, во-первых, напомним, как определяется расстояние от точки до точки на координатной прямой. Далее получим формулы для вычисления расстояния между двумя точками плоскости или пространства по заданным координатам. В заключении, подробно рассмотрим решения характерных примеров и задач.

Навигация по странице.

Расстояние между двумя точками на координатной прямой.

Давайте для начала определимся с обозначениями. Расстояние от точки А до точки В будем обозначать как .

Отсюда можно заключить, что расстояние от точки А с координатой до точки В с координатой равно модулю разности координат , то есть, при любом расположении точек на координатной прямой.

Расстояние от точки до точки на плоскости, формула.

Получим формулу для вычисления расстояния между точками и , заданными в прямоугольной декартовой системе координат на плоскости.

В зависимости от расположения точек А и В возможны следующие варианты.

Если точки А и В совпадают, то расстояние между ними равно нулю.

Если точки А и В лежат на прямой, перпендикулярной оси абсцисс, то точки и совпадают, а расстояние равно расстоянию . В предыдущем пункте мы выяснили, что расстояние между двумя точками на координатной прямой равно модулю разности их координат, поэтому, . Следовательно, .

Аналогично, если точки А и В лежат на прямой, перпендикулярной оси ординат, то расстояние от точки А до точки В находится как .

В этом случае треугольник АВС – прямоугольный по построению, причем и . По теореме Пифагора мы можем записать равенство , откуда .

Обобщим все полученные результаты: расстояние от точки до точки на плоскости находится через координаты точек по формуле .

Полученную формулу для нахождения расстояния между точками, можно использовать когда точки А и В совпадают или лежат на прямой, перпендикулярной одной из координатных осей. Действительно, если А и В совпадают, то . Если точки А и В лежат на прямой, перпендикулярной оси Ох , то . Если А и В лежат на прямой, перпендикулярной оси Оу , то .

Расстояние между точками в пространстве, формула.

Введем прямоугольную систему координат Оxyz в пространстве. Получим формулу для нахождения расстояния от точки до точки .

В общем случае, точки А и В не лежат в плоскости, параллельной одной из координатных плоскостей. Проведем через точки А и В плоскости, перпендикулярные координатным осям Ох , Оу и Oz . Точки пересечения этих плоскостей с координатными осями дадут нам проекции точек А и В на эти оси. Обозначим проекции .


Искомое расстояние между точками А и В представляет собой диагональ прямоугольного параллелепипеда, изображенного на рисунке. По построению, измерения этого параллелепипеда равны и . В курсе геометрии средней школы было доказано, что квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений, поэтому, . Опираясь на информацию первого раздела этой статьи, мы можем записать следующие равенства , следовательно,

откуда получаем формулу для нахождения расстояния между точками в пространстве .

Эта формула также справедлива, если точки А и В

  • совпадают;
  • принадлежат одной из координатных осей или прямой, параллельной одной из координатных осей;
  • принадлежат одной из координатных плоскостей или плоскости, параллельной одной из координатных плоскостей.

Нахождение расстояния от точки до точки, примеры и решения.

Итак, мы получили формулы для нахождения расстояния между двумя точками координатной прямой, плоскости и трехмерного пространства. Пришло время рассмотреть решения характерных примеров.

Число задач, при решении которых конечным этапом является нахождение расстояния между двумя точками по их координатам, поистине огромно. Полный обзор таких примеров выходит за рамки данной статьи. Здесь мы ограничимся примерами, в которых известны координаты двух точек и требуется вычислить расстояние между ними.

При помощи линейки. Предпочтительно, чтобы она была изготовлена из как можно более тонкого листового материала. В случае, если поверхность, на которой расстелена , не является плоской, поможет портновский метр. А при отсутствии тонкой линейки, и если карту не жалко прокалывать, удобно использовать для измерения циркуль, желательно с двумя иголками. Потом его можно перенести на миллиметровую бумагу и измерить длину отрезка по ней.

Дороги между двумя точками на редко прямыми. Измерить длину линии поможет удобный прибор - курвиметр. Чтобы им воспользоваться, вначале вращением ролика совместите стрелку с нулем. Если курвиметр электронный, устанавливать его на нуль вручную необязательно - достаточно нажать кнопку сброса. Придерживая ролик, прижмите его к начальной точке отрезка так, чтобы риска на корпусе (она расположена над роликом) указывала прямо на эту точку. Затем ведите ролик по линии, пока риска не окажется совмещена с конечной точкой. Прочитайте показания. Учтите, что у некоторых курвиметров имеются две шкалы, одна из которых имеет градуировку в сантиметрах, а другая - в дюймах.

Найдите на карте указатель масштаба - обычно он расположен в правом нижнем углу. Иногда этот указатель представляет собой отрезок калиброванной длины, рядом с которым указано, какому расстоянию он соответствует. Измерьте длину этого отрезка линейкой. Если окажется, например, что он имеет длину в 4 сантиметра, а рядом с ним указано, что соответствует 200 метрам, поделите второе число на первое, и вы узнаете, что каждому на карте соответствует 50 метров на местности. На некоторых вместо отрезка присутствует готовая фраза, которая может выглядеть, например, следующим образом: «В одном сантиметре 150 метров». Также масштаб может быть указан в виде соотношения следующего вида: 1:100000. В этом случае можно подсчитать, что сантиметру на карте соответствует 1000 метров на местности, поскольку 100000/100(сантиметров в метре)=1000 м.

Измеренное линейкой или курвиметром расстояние, выраженное в сантиметрах, умножьте на указанное на карте или рассчитанное количество метров или в одном сантиметре. В результате получится реальное расстояние, выраженное, соответственно, или километрах.

Любая карта представляет собой уменьшенное изображение какой-то территории. Коэффициент, показывающий, насколько изображение уменьшено по отношению к реальному объекту, называется масштабом. Зная его, можно определить расстояние по . Для реально существующих карт на бумажной основе масштаб – величина фиксированная. Для виртуальных, электронных карт эта величина меняется вместе с изменением увеличения изображения карты на экране монитора.

Инструкция

Расстояние по карте можно измерить с помощью инструмента «Линейка» геоинформационных пакетах Google Earth и Yandex Maps, подосновой для карт в которых являются космические спутниковые . Просто включите этот инструмент и кликните мышкой по точке, отмечающей начало вашего маршрута и той, где его планируете завершить. Значение расстояния можно будет узнать в любых заданных единицах измерения.

Расчет расстояний между точками по их координатам на плоскости элементарен, на поверхности Земли — немного посложнее: мы рассмотрим измерение расстояния и начального азимута между точками без проекционных преобразований. Для начала разберемся в терминологии.

Введение

Длина дуги большого круга – кратчайшее расстояние между любыми двумя точками находящимися на поверхности сферы, измеренное вдоль линии соединяющей эти две точки (такая линия носит название ортодромии) и проходящей по поверхности сферы или другой поверхности вращения. Сферическая геометрия отличается от обычной Эвклидовой и уравнения расстояния также принимают другую форму. В Эвклидовой геометрии, кратчайшее расстояние между двумя точками – прямая линия. На сфере, прямых линий не бывает. Эти линии на сфере являются частью больших кругов – окружностей, центры которых совпадают с центром сферы. Начальный азимут — азимут, взяв который при начале движения из точки А, следуя по большому кругу на кратчайшее расстояние до точки B, конечной точкой будет точка B. При движении из точки A в точку B по линии большого круга азимут из текущего положения на конечную точку B постоянно меняется. Начальный азимут отличен от постоянного, следуя которому, азимут из текущей точки на конечную не меняется, но маршрут следования не является кратчайшим расстоянием между двумя точками.

Через любые две точки на поверхности сферы, если они не прямо противоположны друг другу (то есть не являются антиподами), можно провести уникальный большой круг. Две точки, разделяют большой круг на две дуги. Длина короткой дуги – кратчайшее расстояние между двумя точками. Между двумя точками-антиподами можно провести бесконечное количество больших кругов, но расстояние между ними будет одинаково на любом круге и равно половине окружности круга, или π*R, где R – радиус сферы.

На плоскости (в прямоугольной системе координат), большие круги и их фрагменты, как было упомянуто выше, представляют собой дуги во всех проекциях, кроме гномонической, где большие круги — прямые линии. На практике это означает, что самолеты и другой авиатранспорт всегда использует маршрут минимального расстояния между точками для экономии топлива, то есть полет осуществляется по расстоянию большого круга, на плоскости это выглядит как дуга.

Форма Земли может быть описана как сфера, поэтому уравнения для вычисления расстояний на большом круге важны для вычисления кратчайшего расстояния между точками на поверхности Земли и часто используются в навигации. Вычисление расстояния этим методом более эффективно и во многих случаях более точно, чем вычисление его для спроектированных координат (в прямоугольных системах координат), поскольку, во-первых, для этого не надо переводить географические координаты в прямоугольную систему координат (осуществлять проекционные преобразования) и, во-вторых, многие проекции, если неправильно выбраны, могу привести к значительным искажениям длин в силу особенностей проекционных искажений. Известно, что более точно описывает форму Земли не сфера, а эллипсоид, однако в данной статье рассматривается вычисление расстояний именно на сфере, для вычислений используется сфера радиусом 6372795 метров, что может привести к ошибке вычисления расстояний порядка 0.5%.

Формулы

Существует три способа расчета сферического расстояния большого круга. 1. Сферическая теорема косинусов В случае маленьких расстояний и небольшой разрядности вычисления (количество знаков после запятой), использование формулы может приводить к значительным ошибкам связанным с округлением. φ1, λ1; φ2, λ2 — широта и долгота двух точек в радианах Δλ — разница координат по долготе Δδ — угловая разница Δδ = arccos {sin φ1 sin φ2 + cos φ1 cos φ2 cos Δλ} Для перевода углового расстояния в метрическое, нужно угловую разницу умножить на радиус Земли (6372795 метров), единицы конечного расстояния будут равны единицам, в которых выражен радиус (в данном случае — метры). 2. Формула гаверсинусов Используется, чтобы избежать проблем с небольшими расстояниями. 3. Модификация для антиподов Предыдущая формула также подвержена проблеме точек-антиподов, чтобы ее решить используется следующая ее модификация.

Моя реализация на РНР

// Радиус земли define("EARTH_RADIUS", 6372795); /* * Расстояние между двумя точками * $φA, $λA - широта, долгота 1-й точки, * $φB, $λB - широта, долгота 2-й точки * Написано по мотивам http://gis-lab.info/qa/great-circles.html * Михаил Кобзарев * */ function calculateTheDistance ($φA, $λA, $φB, $λB) { // перевести координаты в радианы $lat1 = $φA * M_PI / 180; $lat2 = $φB * M_PI / 180; $long1 = $λA * M_PI / 180; $long2 = $λB * M_PI / 180; // косинусы и синусы широт и разницы долгот $cl1 = cos($lat1); $cl2 = cos($lat2); $sl1 = sin($lat1); $sl2 = sin($lat2); $delta = $long2 - $long1; $cdelta = cos($delta); $sdelta = sin($delta); // вычисления длины большого круга $y = sqrt(pow($cl2 * $sdelta, 2) + pow($cl1 * $sl2 - $sl1 * $cl2 * $cdelta, 2)); $x = $sl1 * $sl2 + $cl1 * $cl2 * $cdelta; // $ad = atan2($y, $x); $dist = $ad * EARTH_RADIUS; return $dist; } Пример вызова функции: $lat1 = 77.1539; $long1 = -139.398; $lat2 = -77.1804; $long2 = -139.55; echo calculateTheDistance($lat1, $long1, $lat2, $long2) . " метров"; // Вернет "17166029 метров"