Распространение акустических волн в воде. Скорость звука в воде

Мы воспринимаем звуки, находясь на расстоянии от их источников. Обычно звук доходит до нас по воздуху. Воздух является упругой средой, передающей звук.

Обрати внимание!

Если между источником и приёмником удалить звукопередающую среду, то звук распространяться не будет и, следовательно, приёмник не воспримет его.

Пример:

Поместим под колокол воздушного насоса часы-будильник (рис. 1).

Пока в колоколе находится воздух, звук звонка слышен ясно. При откачивании воздуха из-под колокола звук постепенно слабеет и, наконец, становится неслышимым. Без передающей среды колебания тарелки звонка не могут распространяться, и звук не доходит до нашего уха. Впустим под колокол воздух и снова услышим звон.

Обрати внимание!

Хорошо проводят звуки упругие вещества, например металлы, древесина, жидкости, газы.

Положим на один конец деревянной доски карманные часы, а сами отойдём к другому концу. Приложив ухо к доске, услышим ход часов (рис. 2).

Привяжем к металлической ложке бечёвку. Конец бечёвки приложим к уху. Ударяя по ложке, услышим сильный звук (рис. 3). Ещё более сильный звук услышим, если бечёвку заменим проволокой.

Обрати внимание!

Мягкие и пористые тела - плохие проводники звука.

Чтобы защитить какое-нибудь помещение от проникновения посторонних звуков, стены, пол и потолок прокладывают прослойками из звукопоглощающих материалов. В качестве прослоек используют войлок, прессованную пробку, пористые камни, различные синтетические материалы (например, пенопласт), изготовленные на основе вспененных полимеров. Звук в таких прослойках быстро затухает.

Звук распространяется в любой упругой среде - твёрдой, жидкой и газообразной, но не может распространяться в пространстве, где нет вещества.

Колебания источника создают в окружающей его среде упругую волну звуковой частоты. Волна, достигая уха, воздействует на барабанную перепонку, заставляя её колебаться с частотой, соответствующей частоте источника звука. Дрожания барабанной перепонки передаются посредством системы косточек окончаниям слухового нерва, раздражают их и тем вызывают ощущение звука (рис. 4).

В газах и жидкостях могут существовать только продольные упругие волны. Поэтому звук в воздухе передаётся продольными волнами, то есть чередующимися сгущениями и разрежениями воздуха, идущими от источника звука.

Звуковая волна, как и любые другие механические волны, распространяется в пространстве не мгновенно, а с определённой скоростью.

Наблюдая за стрельбой из ружья, мы сначала видим огонь и дым, а потом через некоторое время слышим звук выстрела.

    Звуковые волны могут распространяться в различных средах - в жидкой, тврдой и газообразной. Волны не могут образовываться только в безвоздушном пространстве. Чем более плотной является среда, тем выше в ней скорость распространения звука. В воде скорость, достигаемая звуковыми волнами, в четыре с лишним раза превосходит скорость их распространения в воздухе.

    Вот объяснение данного явления с точки зрения физики:

    Звук распространяется быстрее в упругой среде. Чем выше плотность этой среды, тем она благоприятнее для распространения звуковых колебаний. Скорость звука в воде достигает 1500 метров в секунду, а в воздухе - всего 330-340 м/с, скорость также зависит и от температуры.

    Для сравнения, скорость звука в металлах - 5000 метров в секунду.

    Звуковые волне не распространяются лишь в безвоздушном пространстве, в жидкой среде, газообразной, а так же тврдой звуковые волны распространяются спокойно.

    Скорость же распространения звуковых волн на прямую зависит от плотности среды, чем больше плотность среды, тем сильнее скорость распространения волны.

    Плотность воды намного выше плотности воздуха, поэтому и скорость звуковой волны в воды выше.

    В качестве аргумента, Володя, ты приводишь главную причину. Да. Потому что вода - менее сжимаемая среда, чем газ. А твердое тело менее сжимаемо (при распространении волны), чем жидкость. Вода на большой глубине проводит звук быстрее, чем у поверхности, она там сильнее сжата. Между скоростью звука и плотностью среды существует обратно-пропорциональная зависимость. Иными словами, чем менее сжимаема среда распространения волны, тем быстрее эта волна движется.

    Я приведу грубую аналогию. Когда поезд трогается с места, по составу пробегает этакая волна лязга и последний вагон трогается через какое-то время после того, как начал двигаться локомотив. То же самое, но в обратном порядке происходит во время остановки. А все потому что среда сжимаема, между вагонами есть некий зазор, который играет роль сжимаемости среды. Если в момент трогания (остановки) весь состав натянут или сжат (например, находится не на горизонтальной площадке), то последний вагон тронется (остановится) практически одновременно с локомотивом. Среда не-сжимаема и волна распространяется намного быстрее.

    Звук - это волны, которые распространяются в каком-либо веществе. Воздух - это разреженное вещество, а вода намного более плотное вещество, нежели воздух. Поэтому и звуковые волны в воде распространяются быстрее, чем в воздухе.

    Звуковые волны делятся на продольные и поперечные. Скорость распространения звука зависит от плотности среды и может изменяться в довольно широких пределах.В воде и в газообразной среде, где колебания плотности не значительны, акустические волны распространяются продольно, то есть направление колебания частиц среды совпадает с направлением перемещения волны. В плотных (твердых) телах, помимо продольных передвижений, возникают еще и упругие деформации сдвига, что обусловливает возникновение поперечных волн (сдвиговых); поэтому частицы совершают перпендикулярные направлению распространения волны колебания. Помимо направления распространения волны свою роль играет и акустическое сопротивление и давление среды. Кроме того скорость звука зависит и от такого фактора как сжимаемость веществ.

    Именно под водой звук распространяется быстрее, чем в воздухе, причем раз в пять быстрее.

    Даже киты могут слышать друг друга на расстоянии 5 километров.

    Итак, почему же звук под водой распространяется быстрее? А все дело в плотности!

    Плотность воды больше, чем воздуха, но и меньше чем у металла. Соответственно и звуки будут передаваться по разному.

    А вот звуковые волны могут распространяться даже в упругих средах, например, если приложить ухо к земле, можно услышать звук шагов, топот копыт, езду автомобиля и многое другое.

    Звук, это механические колебания, передающиеся в какой-либо среде и воспринимаемые органами чувств. Из за физических свойств различных сред, скорость распространения звуковых колебаний различна. Чем плотнее среда, тем выше скорость передачи звука.Ответ на задание: Звуковые волны в воде распространяются быстрее чем в воздухе, по той причине, что вода имеет большую плотность.

    В чистой воде скорость звука 1500 метров в секунду, причем увеличивается в более теплой и в более соленой воде. Плотность воды выше, чем в воздухе, потому звук распространяется быстрее. К тому же человек воспринимает звук под водой через кости черепной коробки, и звук воспринимается обеими ушами, отчего кажется, что звуки накатывают со всех сторон.

К основным законам распространения звука относятся законы его отражения и преломления на границах различных сред, а также дифракция звука и его рассеяние при наличии препятствий и неоднородностей в среде и на границах раздела сред.

На дальность распространения звука оказывает влияние фактор поглощения звука, то есть необратимый переход энергии звуковой волны в другие виды энергии, в частности, в тепло. Важным фактором является также направленность излучения и скорость распространения звука, которая зависит от среды и её специфического состояния.

От источника звука акустические волны распространяются во все стороны. Если звуковая волна проходит через сравнительно небольшое отверстие, то она распространяется во все стороны, а не идёт направленным пучком. Например, уличные звуки, проникающие через открытую форточку в комнату, слышны во всех её точках, а не только против окна.

Характер распространения звуковых волн у препятствия зависит от соотношения между размерами препятствия и длиной волны. Если размеры препятствия малы по сравнению с длиной волны, то волна обтекает это препятствие, распространяясь во все стороны.

Звуковые волны, проникая из одной среды в другую, отклоняются от своего первоначального направления, то есть преломляются. Угол преломления может быть больше или меньше угла падения. Это зависит от того, из какой среды в какую проникает звук. Если скорость звука во второй среде больше, то угол преломления будет больше угла падения, и наоборот.

Встречая на своём пути препятствие, звуковые волны отражаются от него по строго определённому правилу – угол отражения равен углу падения – с этим связано понятие эха. Если звук отражается от нескольких поверхностей, находящихся на разных расстояниях, возникает многократное эхо.

Звук распространяется в виде расходящейся сферической волны, которая заполняет всё больший объём. С увеличением расстояния, колебания частиц среды ослабевают, и звук рассеивается. Известно, что для увеличения дальности передачи звук необходимо концентрировать в заданном направлении. Когда мы хотим, например, чтобы нас услышали, мы прикладываем ладони ко рту или пользуемся рупором.

Большое влияние на дальность распространения звука оказывает дифракция, то есть искривление звуковых лучей. Чем разнороднее среда, тем больше искривляется звуковой луч и, соответственно, тем меньше дальность распространения звука.

Распространение звука

Звуковые волны могут распространяться в воздухе, газах, жидкостях и твердых телах. В безвоздушном пространстве волны не возникают. В этом легко убедиться на простом опыте. Если электрический звонок поместить под воздухонепроницаемый колпак, из которого откачен воздух, мы никакого звука не услышим. Но как только колпак наполнится воздухом, возникает звук.

Скорость распространения колебательных движений от частицы к частице зависит от среды. В далекие времена воины прикладывали ухо к земле и таким образом обнаруживали конницу противника значительно раньше, чем она появлялась в поле зрения. А известный ученый Леонардо да Винчи в 15 веке писал: «Если ты, будучи на море, опустишь в воду отверстие трубы, а другой конец ее приложишь к уху, то услышишь шум кораблей, очень отдаленных от тебя».

Скорость распространения звука в воздухе впервые была измерена в 17 веке Миланской академией наук. На одном из холмов установили пушку, а на другом расположился наблюдательный пункт. Время засекли и в момент выстрела (по вспышке) и в момент приема звука. По расстоянию между наблюдательным пунктом и пушкой и времени происхождения сигнала скорость распространения звука рассчитать уже не составляло труда. Она оказалась равной 330 метров в секунду.

В воде скорость распространения звука впервые была измерена в 1827 году на Женевском озере. Две лодки находились одна от другой на расстоянии 13847 метров. На первой под днищем подвесили колокол, а со второй опустили в воду простейший гидрофон (рупор). На первой лодке одновременно с ударом в колокол подожгли порох, на второй наблюдатель в момент вспышки запустил секундомер и стал, ждать прихода звукового сигнала от колокола. Выяснилось, что в воде звук распространяется в 4 с лишним раза быстрее, чем в воздухе, т.е. со скоростью 1450 метров в секунду.

Скорость распространения звука

Чем выше упругость среды, тем больше скорость: в каучуке50, в воздухе330, в воде1450, а в стали - 5000 метров в секунду. Если бы мы, находились в Москве, могли крикнуть так громко, чтобы звук долетел до Петербурга, то нас услышали бы там только через полчаса, а если бы звук на это же расстояние распространялся в стали, то он был бы принят через две минуты.

На скорость распространения звука оказывает влияние состояние одной и той же среды. Когда мы говорим, что в воде звук распространяется со скоростью 1450 метров в секунду, это вовсе не означает, что в любой воде и при любых условиях. С повышением температуры и солености воды, а так же с увеличением глубины, а следовательно, и гидростатического давления скорость звука возрастает. Или возьмем сталь. Здесь тоже скорость звука зависит как от температуры, так и от качественного состава стали: чем больше в ней углерода, тем она тверже, тем звук в ней распространяется быстрее.

Встречая на своем пути препятствие, звуковые волны отражаются от него по строго определенному правилу: угол отражения равен углу падения. Звуковые волны, идущие из воздуха, почти полностью отразятся от поверхности воды вверх, а звуковые волны, идущие от источника, находящегося в воде, отражаются от нее вниз.

Звуковые волны, проникая из одной среды в другую, отклоняются от своего первоначального положения, т.е. преломляются. Угол преломления может быть больше или меньше угла падения. Это зависит от того, из какой среды, в какую проникает звук. Если скорость звука во второй среде больше чем в первой, то угол преломления будет больше угла падения и наоборот.

В воздухе звуковые волны распространяются в виде расходящийся сферической волны, которая заполняет все больший объем, так как колебания частиц, вызванные источниками звука, передаются массе воздуха. Однако с увеличением расстояния колебания частиц ослабевают. Известно, что для увеличения дальности передачи, звук необходимо концентрировать в заданном направлении. Когда мы хотим, чтобы нас лучше было слышно, мы прикладываем ладони ко рту или пользуемся рупором. В этом случае звук будет ослабляться меньше, а звуковые волны - распространяются дальше.

При увеличении толщины стенки звуколокация на низких средних частотах увеличивается, но «коварный» резонанс совпадения, вызывающий удушение звуколокации, начинает проявляться, более низких частотах и захватывает более широкую их область.

Мы воспринимаем звуки, находясь на расстоянии от их источников. Обычно звук доходит до нас по воздуху. Воздух является упругой средой, передающей звук.

Если между источником и приёмником удалить звукопередающую среду, то звук распространяться не будет и, следовательно, приёмник не воспримет его. Продемонстрируем это на опыте.

Поместим под колокол воздушного насоса часы-будильник (рис. 80). Пока в колоколе находится воздух, звук звонка слышен ясно. При откачивании воздуха из-под колокола звук постепенно слабеет и, наконец, становится неслышимым. Без передающей среды колебания тарелки звонка не могут распространяться, и звук не доходит до нашего уха. Впустим под колокол воздух и снова услышим звон.

Рис. 80. Опыт, доказывающий, что в пространстве, где нет вещественной среды, звук не распространяется

Хорошо проводят звуки упругие вещества, например металлы, древесина, жидкости, газы.

Положим на один конец деревянной доски карманные часы, а сами отойдём к другому концу. Приложив ухо к доске, услышим ход часов.

Привяжем к металлической ложке бечёвку. Конец бечёвки приложим к уху. Ударяя по ложке, услышим сильный звук. Ещё более сильный звук услышим, если бечёвку заменим проволокой.

Мягкие и пористые тела - плохие проводники звука. Чтобы защитить какое-нибудь помещение от проникновения посторонних звуков, стены, пол и потолок прокладывают прослойками из звукопоглощающих материалов. В качестве прослоек используют войлок, прессованную пробку, пористые камни, различные синтетические материалы (например, пенопласт), изготовленные на основе вспененных полимеров. Звук в таких прослойках быстро затухает.

Жидкости хорошо проводят звук. Рыбы, например, хорошо слышат шаги и голоса на берегу, это известно опытным рыболовам.

Итак, звук распространяется в любой упругой среде - твёрдой, жидкой и газообразной, но не может распространяться в пространстве, где нет вещества.

Колебания источника создают в окружающей его среде упругую волну звуковой частоты. Волна, достигая уха, воздействует на барабанную перепонку, заставляя её колебаться с частотой, соответствующей частоте источника звука. Дрожания барабанной перепонки передаются посредством системы косточек окончаниям слухового нерва, раздражают их и тем вызывают ощущение звука.

Напомним, что в газах и жидкостях могут существовать только продольные упругие волны. Звук в воздухе, например, передаётся продольными волнами, т. е. чередующимися сгущениями и разрежениями воздуха, идущими от источника звука.

Звуковая волна, как и любые другие механические волны, распространяется в пространстве не мгновенно, а с определённой скоростью. В этом можно убедиться, например, наблюдая издалека за стрельбой из ружья. Сначала видим огонь и дым, а потом через некоторое время слышим звук выстрела. Дым появляется в то же время, когда происходит первое звуковое колебание. Измерив промежуток времени t между моментом возникновения звука (момент появления дыма) и моментом, когда он доходит до уха, можно определить скорость распространения звука:

Измерения показывают, что скорость звука в воздухе при 0 °С и нормальном атмосферном давлении равна 332 м/с.

Скорость звука в газах тем больше, чем выше их температура. Например, при 20 °С скорость звука в воздухе равна 343 м/с, при 60 °С - 366 м/с, при 100 °С - 387 м/с. Объясняется это тем, что с повышением температуры возрастает упругость газов, а чем больше упругие силы, возникающие в среде при её деформации, тем больше подвижность частиц и тем быстрее передаются колебания от одной точки к другой.

Скорость звука зависит также от свойств среды, в которой распространяется звук. Например, при 0 °С скорость звука в водороде равна 1284 м/с, а в углекислом газе - 259 м/с, так как молекулы водорода менее массивны и менее инертны.

В настоящее время скорость звука может быть измерена в любой среде.

Молекулы в жидкостях и твёрдых телах расположены ближе друг к другу и сильнее взаимодействуют, чем молекулы газов. Поэтому скорость звука в жидких и твёрдых средах больше, чем в газообразных.

Поскольку звук - это волна, то для определения скорости звука, помимо формулы V = s/t, можно пользоваться известными вам формулами: V = λ/T и V = vλ. При решении задач скорость звука в воздухе обычно считают равной 340 м/с.

Вопросы

  1. С какой целью ставят опыт, изображённый на рисунке 80? Опишите, как этот опыт проводится и какой вывод из него следует.
  2. Может ли звук распространяться в газах, жидкостях, твёрдых телах? Ответы подтвердите примерами.
  3. Какие тела лучше проводят звук - упругие или пористые? Приведите примеры упругих и пористых тел.
  4. Какую волну - продольную или поперечную - представляет собой звук, распространяющийся в воздухе; в воде?
  5. Приведите пример, показывающий, что звуковая волна распространяется не мгновенно, а с определённой скоростью.

Упражнение 30

  1. Может ли звук сильного взрыва на Луне быть слышен на Земле? Ответ обоснуйте.
  2. Если к каждому из концов нити привязать по одной половинке мыльницы, то с помощью такого телефона можно переговариваться даже шёпотом, находясь в разных комнатах. Объясните явление.
  3. Определите скорость звука в воде, если источник, колеблющийся с периодом 0,002 с, возбуждает в воде волны длиной 2,9 м.
  4. Определите длину звуковой волны частотой 725 Гц в воздухе, в воде и в стекле.
  5. По одному концу длинной металлической трубы один раз ударили молотком. Будет ли звук от удара распространяться ко второму концу трубы по металлу; по воздуху внутри трубы? Сколько ударов услышит человек, стоящий у другого конца трубы?
  6. Наблюдатель, стоящий около прямолинейного участка железной дороги, увидел пар над свистком идущего вдали паровоза. Через 2 с после появления пара он услышал звук свистка, а через 34 с паровоз прошёл мимо наблюдателя. Определите скорость движения паровоза.

Гидроакустика (от греч. hydor - вода, akusticoc - слуховой) - наука о явлениях, происходящих в водной среде и связанных с распространением, излучением и приемом акустических волн. Она включает вопросы разработки и создания гидроакустических средств, предназначенных для использования в водной среде.

История развития

Гидроакустика - быстро развивающаяся в настоящее время наука, и имеющая, несомненно, большое будущее. Ее появлению предшествовал долгий путь развития теоретической и прикладной акустики. Первые сведения о проявлении интереса человека к распространению звука в воде мы находим в записках известного ученого эпохи Возрождения Леонардо да Винчи :

Первые измерения расстояния посредством звука произвел русский исследователь академик Я. Д. Захаров. 30 июня 1804 г. он совершил полет на воздушном шаре с научной целью и в этом полете воспользовался отражением звука от поверхности земли для определения высоты полета. Находясь в корзине шара, он громко крикнул в рупор, направленный вниз. Через 10 сек пришло отчетливо слышное эхо. Отсюда Захаров заключил, что высота шара над землей равнялась приблизительно 5 х 334 = 1670 м. Этот способ лег в основу радио и гидролокации.

Наряду с разработкой теоретических вопросов в России проводились практические исследования явлений распространения звуков в море. Адмирал С. О. Макаров в 1881 - 1882 гг. предложил использовать для передачи информации о скорости течения под водой прибор, названный флюктометром. Этим было положено начало развитию новой отрасли науки и техники - гидроакустической телеметрии .

Схема гидрофонической станции Балтийского завода обр.1907г.: 1 - водяной насос; 2 - трубопровод; 3 - регулятор давления; 4 - электромагнитный гидравлический затвор (телеграфный клапан); 5 - телеграфный ключ; 6 - гидравлический мембранный излучатель; 7 - борт корабля; 8 - танк с водой; 9 - герметизированный микрофон

В 1890-х гг. на Балтийском судостроительном заводе по инициативе капитана 2 ранга М. Н. Беклемишева начали работы по разработке приборов гидроакустической связи. Первые испытания гидроакустического излучателя для звукоподводной связи проводились в конце XIX в. в опытовом бассейне в Галерной гавани в Петербурге. Излучаемые им колебания хорошо прослушивались за 7 верст на Невском плавучем маяке. В результате исследований в 1905г. создали первый прибор гидроакустической связи, в котором роль передающего устройства играла специальная подводная сирена, управляемая телеграфным ключом, а приемником сигналов служил угольный микрофон, закрепленный изнутри на корпусе корабля. Сигналы регистрировались аппаратом Морзе и на слух. Позднее сирену заменили излучателем мембранного типа. Эффективность прибора, названного гидрофонической станцией, значительно повысилась. Морские испытания новой станции состоялись в марте 1908г. на Черном море, где дальность уверенного приема сигналов превышала 10км.

Первые серийные станции звукоподводной связи конструкции Балтийского завода в 1909-1910 гг. установили на подводных лодках «Карп» , «Пескарь» , «Стерлядь» , «Макрель » и «Окунь » . При установке станций на подводных лодках в целях уменьшения помех приемник располагался в специальном обтекателе, буксируемом за кормой на кабель-тросе. К подобному решению англичане пришли лишь во время Первой мировой войны. Затем эту идею забыли и только в конце 1950-х г г. ее снова стали использовать в разных странах при создании помехоустойчивых гидролокационных корабельных станций.

Толчком к развитию гидроакустики послужила первая мировая война . Во время воины страны Антанты несли большие потери торгового и военного флота из-за действия немецких подводных лодок. Возникла необходимость в поиске средств борьбы с ними. Вскоре они были найдены. Подводную лодку в подводном положении можно услышать по шуму, создаваемому гребными винтами и работающими механизмами. Прибор, обнаруживающий шумящие объекты и определяющий их местонахождение, был назван шумопеленгатор . Французский физик П. Ланжевен в 1915 г. предложил использовать чувствительный приемник из сегнетовой соли для первой шумопеленгаторной станции.

Основы гидроакустики

Особенности распространения акустических волн в воде

Компоненты события появления эхосигнала.

Начало всесторонних и фундаментальных исследований по распространению акустических волн в воде было положено в годы Второй мировой войны, что диктовалось необходимостью решения практических задач военно-морских флотов и в первую очередь подводных лодок. Экспериментальные и теоретические работы были продолжены и в послевоенные годы и обобщены в ряде монографий. В результате этих работ были выявлены и уточнены некоторые особенности распространения акустических волн в воде: поглощение, затухание, отражение и рефракция.

Поглощение энергии акустической волны в морской воде обуславливается двумя процессами: внутренним трением среды и диссоциацией растворенных в ней солей. Первый процесс преобразует энергию акустической волны в тепловую, а второй - преобразуясь в химическую энергию, выводит молекулы из равновесного состояния, и они распадаются на ионы. Этот вид поглощения резко возрастает с увеличением частоты акустического колебания. Наличие в воде взвешенных частиц, микроорганизмов и температурных аномалий приводит также к затуханию акустической волны в воде. Как правило, эти потери невелики, и их включают в общее поглощение, однако иногда, как, например, в случае рассеяния от следа корабля, эти потери могут составить До 90 %. Наличие температурных аномалий приводит к тому, что акустическая волна попадает в зоны акустической тени, где она может претерпеть многократные отражения.

Наличие границ раздела вода - воздух и вода - дно приводит к отражению от них акустической волны, причем, если в первом случае акустическая волна отражается полностью, то во втором случае коэффициент отражения зависит от материала дна: плохо отражает илистое дно, хорошо - песчаное и каменистое. На небольших глубинах из-за многократного отражения акустической волны между дном и поверхностью возникает подводный звуковой канал, в котором акустическая волна может распространяться на большие расстояния. Изменение величины скорости звука на разных глубинах приводит к искривлению звуковых «лучей» - рефракции.

Рефракция звука (искривление пути звукового луча)

Рефракция звука в воде: а - летом; б - зимой; слева - изменение скорости с глубиной.

Скорость распространения звука изменяется с глубиной, причём изменения зависят от времени года и дня, глубины водоёма и ряда других причин. Звуковые лучи, выходящие из источника под некоторым углом к горизонту, изгибаются, причём направление изгиба зависит от распределения скоростей звука в среде: летом, когда верхние слои теплее нижних, лучи изгибаются книзу и в большинстве отражаются от дна, теряя при этом значительную долю своей энергии; зимой, когда нижние слои воды сохраняют свою температуру, между тем как верхние слои охлаждаются, лучи изгибаются кверху и многократно отражаются от поверхности воды, при этом теряется значительно меньше энергии. Поэтому зимой дальность распространения звука больше, чем летом. Вертикальное распределение скорости звука (ВРСЗ) и градиент скорости оказывают определяющее влияние на распространение звука в морской среде. Распределение скорости звука в различных районах Мирового океана различно и меняется во времени. Различают несколько типичных случаев ВРСЗ:

Рассеивание и поглощение звука неоднородностями среды.

Распространение звука в подводном звук. канале: а - изменение скорости звука с глубиной; б - ход лучей в звуковом канале.

На распространение звуков высокой частоты, когда длины волн очень малы, оказывают влияние мелкие неоднородности, обычно имеющиеся в естественных водоёмах: пузырьки газов, микроорганизмы и т. д. Эти неоднородности действуют двояким образом: они поглощают и рассеивают энергию звуковых волн. В результате с повышением частоты звуковых колебаний дальность их распространения сокращается. Особенно сильно этот эффект заметен в поверхностном слое воды, где больше всего неоднородностей.

Рассеивание звука неоднородностями, а также неровностями поверхности воды и дна вызывает явление подводной реверберации , сопровождающей посылку звукового импульса: звуковые волны, отражаясь от совокупности неоднородностей и сливаясь, дают затягивание звукового импульса, продолжающееся после его окончания. Пределы дальности распространения подводных звуков так же ограничиваются собственными шумами моря, имеющими двоякое происхождение: часть шумов возникает от ударов волн на поверхности воды, от морского прибоя, от шума перекатываемой гальки и т. п.; другая часть связана с морской фауной (звуки, производимые гидробионтами: рыбами и др. морскими животными). Этим очень серьёзным аспектом занимается биогидроакустика.

Дальность распространения звуковых волн

Дальность распространения звуковых волн является сложной функцией частоты излучения, которая однозначно связана с длиной волны акустического сигнала. Как известно, высокочастотные акустические сигналы быстро затухают благодаря сильному поглощению водной средой. Низкочастотные сигналы напротив способны распространяться в водной среде на большие расстояния. Так акустический сигнал с частотой 50 Гц способен распространяться в океане на расстояния в тысячи километров, в то время как сигнал с частотой 100 кГц, обычный для гидролокатора бокового обзора, имеет дальность распространения всего 1-2 км. Приблизительные дальности действия современных гидролокаторов с различной частотой акустического сигнала (длиной волны) приведены в таблице:

Области применения.

Гидроакустика получила широкое практическое применение, поскольку ещё не создано эффективной системы передачи электромагнитных волн под водой на сколько-нибудь значительном расстоянии, и звук поэтому является единственным возможным средством связи под водой. Для этих целей пользуются звуковыми частотами от 300 до 10000 гц и ультразвуками от 10000 гц и выше. В качестве излучателей и приёмников в звуковой области используются электродинамические и пьезоэлектрические излучатели и гидрофоны, а в ультразвуковой - пьезоэлектрические и магнитострикционные.

Наиболее существенные применения гидроакустики:

  • Для решения военных задач;
  • Морская навигация;
  • Звукоподводная связь;
  • Рыбопоисковая разведка;
  • Океанологические исследования;
  • Сферы деятельности по освоению богатств дна Мирового океана;
  • Использование акустики в бассейне (дома или в тренировочном центре по синхронному плаванию)
  • Тренировка морских животных.

Примечания

Литература и источники информации

ЛИТЕРАТУРА:

  • В.В. Шулейкин Физика моря . - Москва: «Наука», 1968г.. - 1090 с.
  • И.А. Румынская Основы гидроакустики . - Москва: «Судостроение», 1979 г.. - 105 с.
  • Ю.А. Корякин Гидроакустические системы . - СПб: «Наука Санкт-Петербурга и морская мощь России», 2002 г.. - 416 с.